Nano Research

, Volume 11, Issue 3, pp 1651–1663 | Cite as

High-performance asymmetrical supercapacitor composed of rGO-enveloped nickel phosphite hollow spheres and N/S co-doped rGO aerogel

  • Deyang Zhang
  • Yihe ZhangEmail author
  • Yongsong Luo
  • Yu Zhang
  • Xiaowei Li
  • Xuelian Yu
  • Hao Ding
  • Paul K. Chu
  • Li SunEmail author
Research Article


An asymmetrical supercapacitor (ASC), comprising reduced graphene oxide (rGO)-encapsulated nickel phosphite hollow microspheres (NPOH-0.5@rGO) as positive electrode, and porous nitrogen/sulfur co-doped rGO aerogel (NS-3D rGO) as negative electrode has been prepared. The NPOH-0.5@rGO electrode combines the advantages of the NPOH hollow microspheres and the conductive rGO layers giving rise to a large specific capacitance, high cycling reversibility, and excellent rate performance. The NS-3D rGO electrode with abundant porosity and active sites promotes electrolyte infiltration and broadens the working voltage range. The ASC (NPOH-0.5@rGO//NS-3D rGO) shows a maximum voltage of up to 1.4 V, outstanding cycling ability (capacitance retention of 95.5% after 10,000 cycles), and excellent rate capability (capacitance retention of 77% as the current density is increased ten times). The ASC can light up an light-emitting diodes (LED) for more than 20 min after charging for 20 s. The fabrication technique and device architecture can be extended to other active oxide and carbon-based materials for next-generation high-performance electrochemical storage devices.


nickel phosphate hollow sphere graphene nitrogen/sulfur co-doping asymmetrical supercapacitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was jointly supported by the National Natural Science Foundation of China (No. 51572246), Fundamental Research Funds for the Central Universities (Nos. 53200859565, 53200859500 and 2652015425), as well as City University of Hong Kong Applied Research Grant (ARG) (No. 9667122) and Strategic Research Grant (SRG) (No. 7004644).

Supplementary material

12274_2017_1780_MOESM1_ESM.pdf (2.9 mb)
High-performance asymmetrical supercapacitor composed of rGO-enveloped nickel phosphite hollow spheres and N/S co-doped rGO aerogel


  1. [1]
    Miller, J. R.; Simon, P. Electrochemical capacitors for energy management. Science 2008, 321, 651–652.CrossRefGoogle Scholar
  2. [2]
    Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.CrossRefGoogle Scholar
  3. [3]
    Sun, L.; Li, M.; Jiang, Y.; Kong, W. B.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for highperformance lithium sulfur batteries. Nano Lett. 2014, 14, 4044–4049.CrossRefGoogle Scholar
  4. [4]
    Sun, L.; Wang, D. T.; Luo, Y. F.; Wang, K.; Kong, W. B.; Wu, Y.; Zhang, L. N.; Jiang, K. L.; Li, Q. Q.; Zhang, Y. H. et al. Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium-sulfur batteries. ACS Nano 2016, 10, 1300–1308.CrossRefGoogle Scholar
  5. [5]
    Hou, X. Y.; Peng, T.; Cheng, J. B.; Yu, Q. H.; Luo, R. J.; Lu, Y.; Liu, X. M.; Kim, J. K.; He, J.; Luo, Y. S. Ultrathin ZnS nanosheet/carbon nanotube hybrid electrode for highperformance flexible all-solid-state supercapacitor. Nano Res. 2017, 10, 2570–2583.CrossRefGoogle Scholar
  6. [6]
    Luo, Y. S.; Luo, J. S.; Jiang, J.; Zhou, W. W.; Yang, H. P.; Qi, X. Y.; Zhang, H.; Fan, H. J.; Yu, D. Y. W.; Li, C. M. et al. Seed-assisted synthesis of highly ordered TiO2@a-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ. Sci. 2012, 5, 6559–6566.CrossRefGoogle Scholar
  7. [7]
    Xu, Y. X.; Huang, X. Q.; Lin, Z. Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65–76.CrossRefGoogle Scholar
  8. [8]
    Chen, J.; Li, C.; Shi, G. Q. Graphene materials for electrochemical capacitors. J. Phys. Chem. Lett. 2013, 4, 1244–1253.CrossRefGoogle Scholar
  9. [9]
    Bose, S.; Kuila, T.; Mishra, A. K.; Rajasekar, R.; Kim, N. H.; Lee, J. H. Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 2012, 22, 767–784.CrossRefGoogle Scholar
  10. [10]
    Wang, H. L.; Liang, Y. Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. J. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 2011, 4, 729–736.CrossRefGoogle Scholar
  11. [11]
    Zhang, J. T.; Jiang, J. W.; Li, H. L.; Zhao, X. S. A highperformance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ. Sci. 2011, 4, 4009–4015.CrossRefGoogle Scholar
  12. [12]
    Wu, Z. S.; Wang, D. W.; Ren, W. C.; Zhao, J. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 2010, 20, 3595–3602.CrossRefGoogle Scholar
  13. [13]
    Zhang, D. Y.; Zhang, Y. H.; Luo, Y. S.; Chu, P. K. Highly porous honeycomb manganese oxide@carbon fibers core–shell nanocables for flexible supercapacitors. Nano Energy 2015, 13, 47–57.CrossRefGoogle Scholar
  14. [14]
    Park, S.; Shim, H. W.; Lee, C. W.; Song, H. J.; Park, I. J.; Kim, J. C.; Hong, K. S.; Kim, D. W. Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes. Nano Res. 2015, 8, 990–1004.CrossRefGoogle Scholar
  15. [15]
    Peng, Y. T.; Chen, Z.; Wen, J.; Xiao, Q. F.; Weng, D.; He, S. Y.; Geng, H. B.; Lu, Y. F. Hierarchical manganese oxide/carbon nanocomposites for supercapacitor electrodes. Nano Res. 2011, 4, 216–225.CrossRefGoogle Scholar
  16. [16]
    Yan, H. L.; Zhang, D. Y.; Xu, J. Y.; Lu, Y.; Liu, Y. X.; Qiu, K. W.; Zhang, Y. H.; Luo, Y. S. Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors. Nanoscale Res. Lett. 2014, 9, 424.CrossRefGoogle Scholar
  17. [17]
    Zhang, D. Y.; Zhang, Y. H.; Li, X. W.; Luo, Y. S.; Huang, H. W.; Wang, J. P.; Chu, P. K. Self-assembly of mesoporous ZnCo2O4 nanomaterials: Density functional theory calculation and flexible all-solid-state energy storage. J. Mater. Chem. A 2016, 4, 568–577.CrossRefGoogle Scholar
  18. [18]
    Zhang, D. Y.; Yan, H. L.; Lu, Y.; Qiu, K. W.; Wang, C. L.; Tang, C. C.; Zhang, Y. H.; Cheng, C. W.; Luo, Y. S. Hierarchical mesoporous nickel cobaltite nanoneedle/carbon cloth arrays as superior flexible electrodes for supercapacitors. Nanoscale Res. Lett. 2014, 9, 139–147.CrossRefGoogle Scholar
  19. [19]
    Zhang, D. Y.; Yan, H. L.; Lu, Y.; Qiu, K. W.; Wang, C. L.; Zhang, Y. H.; Liu, X. M.; Luo, J. S.; Luo, Y. S. NiCo2O4 nanostructure materials: Morphology control and electrochemical energy storage. Dalton Trans. 2014, 43, 15887–15897.CrossRefGoogle Scholar
  20. [20]
    Huang, Y.; Liang, J. J.; Chen, Y. S. An overview of the applications of graphene-based materials in supercapacitors. Small 2012, 8, 1805–1834.CrossRefGoogle Scholar
  21. [21]
    Wu, Z. S.; Zhou, G.; Yin, L. C.; Ren, W.; Li, F.; Cheng, H. M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107–131.CrossRefGoogle Scholar
  22. [22]
    An, C. H.; Wang, Y. J.; Wang, Y. P.; Liu, G.; Li, L.; Qiu, F. Y.; Xu, Y. N.; Jiao, L. F.; Yuan, H. T. Facile synthesis and superior supercapacitor performances of Ni2P/rGO nanoparticles. Rsc Adv. 2013, 3, 4628–4633.CrossRefGoogle Scholar
  23. [23]
    Marcos, M. D.; Amoros, P.; Beltran-Porter, A.; Martinez-Manez, R.; Attfield, J. P. Novel crystalline microporous transition-metal phosphites M11(HPO3)8(OH)6 (M = Zn, Co, Ni). X-ray powder diffraction structure determination of the cobalt and nickel derivatives. Chem. Mater. 1993, 5, 121–128.Google Scholar
  24. [24]
    Gao, Y. P.; Zhao, J. H.; Run, Z.; Zhang, G. Q.; Pang, H. Microporous M11(HPO3)8(OH)6 nanocrystals for highperformance flexible asymmetric all solid-state supercapacitors. Dalton Trans. 2014, 43, 17000–17005.CrossRefGoogle Scholar
  25. [25]
    Pang, H.; Wei, C. Z.; Ma, Y. H.; Zhao, S. S.; Li, G. C.; Zhang, J. S.; Chen, J.; Li, S. J. Nickel phosphite superstructures assembled by nanotubes: original application for effective electrode materials of supercapacitors. ChemPlusChem 2013, 78, 546–553.CrossRefGoogle Scholar
  26. [26]
    Pang, H.; Yan, Z. Z.; Wei, Y. Y.; Li, X. X.; Li, J.; Zhang, L.; Chen, J.; Zhang, J. S.; Zheng, H. H. The morphology evolution of nickel phosphite hexagonal polyhedrons and their primary electrochemical capacitor applications. Part. Part. Syst. Char. 2013, 30, 287–295.CrossRefGoogle Scholar
  27. [27]
    Lai, X. Y.; Halpert, J. E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ. Sci. 2012, 5, 5604–5618.CrossRefGoogle Scholar
  28. [28]
    Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. a-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632–637.CrossRefGoogle Scholar
  29. [29]
    Wang, X. J.; Feng, J.; Bai, Y. C.; Zhang, Q.; Yin, Y. D. Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 2016, 116, 10983–11060.CrossRefGoogle Scholar
  30. [30]
    Hummers Jr, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.CrossRefGoogle Scholar
  31. [31]
    Liao, K. M.; Ni, Y. H. Synthesis of hierarchical Ni11(HPO3)8(OH)6 superstructures based on nanorods through a soft hydrothermal route. Mater. Res. Bull. 2010, 45, 205–209.CrossRefGoogle Scholar
  32. [32]
    Tong, Y. Y.; Gu, C. D.; Zhang, J. L.; Huang, M. L.; Tang, H.; Wang, X. L.; Tu, J. P. Three-dimensional astrocyte-network Ni-P-O compound with superior electrocatalytic activity and stability for methanol oxidation in alkaline environments. J. Mater. Chem. A 2015, 3, 4669–4678.CrossRefGoogle Scholar
  33. [33]
    Gu, Z. J.; Zhai, T. Y.; Gao, B. F.; Zhang, G. J.; Ke, D. M.; Ma, Y.; Yao, J. N. Controlled hydrothermal synthesis of nickel phosphite nanocrystals with hierarchical superstructures. Crystal Growth Design 2007, 7, 825–830.CrossRefGoogle Scholar
  34. [34]
    Luo, Y. S.; Luo, J. S.; Zhou, W. W.; Qi, X. Y.; Zhang, H.; Yu, D. Y. W.; Li, C. M.; Fan, H. J.; Yu, T. Controlled synthesis of hierarchical graphene-wrapped TiO2@Co3O4 coaxial nanobelt arrays for high-performance lithium storage. J. Mater. Chem. A 2013, 1, 273–281.CrossRefGoogle Scholar
  35. [35]
    Ai, W.; Luo, Z. M.; Jiang, J.; Zhu, J. H.; Du, Z. Z.; Fan, Z. X.; Xie, L. H.; Zhang, H.; Huang, W.; Yu, T. Nitrogen and sulfur codoped graphene: Multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv. Mater. 2014, 26, 6186–6192.CrossRefGoogle Scholar
  36. [36]
    Pelavin, M.; Hendrickson, D. N.; Hollander, J. M.; Jolly, W. L. Phosphorus 2p electron binding energies. Correlation with extended Hueckel charges. J. Phys. Chem. 1970, 74, 1116–1121.Google Scholar
  37. [37]
    Zhang, G. Q.; Wu, H. B.; Hoster, H. E.; Chan-Park, M. B.; Lou, X. W. D. Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ. Sci. 2012, 5, 9453–9456.CrossRefGoogle Scholar
  38. [38]
    Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Wang, Y.; Huang, Y.; Duan, X. F. Functionalized graphene hydrogel-based highperformance supercapacitors. Adv. Mater. 2013, 25, 5779–5784.CrossRefGoogle Scholar
  39. [39]
    Sun, Y. M.; Hu, X. L.; Luo, W.; Huang, Y. H. Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. Acs Nano 2011, 5, 7100–7107.CrossRefGoogle Scholar
  40. [40]
    Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496–11500.CrossRefGoogle Scholar
  41. [41]
    Wang, Y.; Shao, Y. Y.; Matson, D. W.; Li, J. H.; Lin, Y. H. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 2010, 4, 1790–1798.CrossRefGoogle Scholar
  42. [42]
    Bearinger, J. P.; Terrettaz, S.; Michel, R.; Tirelli, N.; Vogel, H.; Textor, M.; Hubbell, J. A. Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nat. Mater. 2003, 2, 259–264.CrossRefGoogle Scholar
  43. [43]
    Zhang, L.; Shi, G. Q. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J. Phys. Chem. C 2011, 115, 17206–17212.CrossRefGoogle Scholar
  44. [44]
    Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816.CrossRefGoogle Scholar
  45. [45]
    Zhu, J. H.; Jiang, J.; Sun, Z. P.; Luo, J. S.; Fan, Z. X.; Huang, X. T.; Zhang, H.; Yu, T. 3D carbon/cobalt-nickel mixed-oxide hybrid nanostructured arrays for asymmetric supercapacitors. Small 2014, 10, 2937–2945.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Deyang Zhang
    • 1
  • Yihe Zhang
    • 1
    Email author
  • Yongsong Luo
    • 2
  • Yu Zhang
    • 1
  • Xiaowei Li
    • 1
  • Xuelian Yu
    • 1
  • Hao Ding
    • 1
  • Paul K. Chu
    • 3
  • Li Sun
    • 1
    Email author
  1. 1.Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and TechnologyChina University of GeosciencesBeijingChina
  2. 2.School of Physics and Electronic EngineeringXinyang Normal UniversityXinyangChina
  3. 3.Department of Physics and Department of Materials Science and EngineeringCity University of Hong KongKowloon, Hong KongChina

Personalised recommendations