Nano Research

, Volume 11, Issue 3, pp 1169–1182 | Cite as

Silicene on non-metallic substrates: Recent theoretical and experimental advances

  • Emilio ScaliseEmail author
  • Kostantina Iordanidou
  • Valeri V. Afanas’ev
  • André Stesmans
  • Michel HoussaEmail author
Review Article


Silicene, the silicon counterpart of graphene, has been successfully grown on metallic substrates such as Ag(111), ZrB2(0001), and Ir(111) surfaces. However, characterization of its electronic structure is hampered by the metallic substrate. In addition, potential applications of silicene in nanoelectronic devices will require its growth on or integration with semiconducting and insulating substrates. We herein present a review of recent theoretical works regarding the interaction of silicene with non-metallic templates, distinguishing between the weak van-der-Waals-like interactions of silicene with, for example, layered metal (di)chalcogenides, and the stronger covalent bonding between silicene and, for example, ZnS surfaces. We then present a methodology to effectively compare the stability of diverse silicene structures using thermodynamics and molecular dynamics density functional theory calculations. Recent experimental results on the growth of silicene on MoS2 are also reported and compared to the theoretical predictions.


silicene non-metallic substrates chalcogenide MoS2 layered compounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work has been financially supported by the European Project 2D-NANOLATTICES, within the Future and Emerging Technologies (FET) program of the European Commission, under the FET-grant number 270749, as well as the KU Leuven Research Funds, project GOA/13/011. We are grateful to A. Molle (MDM Laboratory), A. Dimoulas (NCSR Demokritos) and G. Pourtois (imec) for their valuable contributions to this work and for stimulating discussions.


  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.CrossRefGoogle Scholar
  3. [3]
    Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.CrossRefGoogle Scholar
  4. [4]
    Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.CrossRefGoogle Scholar
  5. [5]
    Schwierz, F.; Pezoldt, J.; Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 2015, 7, 8261–8283.CrossRefGoogle Scholar
  6. [6]
    Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike twodimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.CrossRefGoogle Scholar
  7. [7]
    Dávila, M. E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicone. New J. Phys. 2014, 16, 095002.CrossRefGoogle Scholar
  8. [8]
    Derivaz, M.; Dentel, D.; Stephan, R.; Hanf, M. C.; Mehdaoui, A.; Sonnet, P.; Pirri, C. Continuous germanene layer on Al(111). Nano Lett. 2015, 15, 2510–2516.CrossRefGoogle Scholar
  9. [9]
    Zhu, F. F.; Chen, W. J.; Xu, Y.; Gao, C. L.; Guan, D. D.; Liu, C. H.; Qian, D.; Zhang, S. C.; Jia, J. F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020–1025.CrossRefGoogle Scholar
  10. [10]
    Takeda, K.; Shiraishi, K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 1994, 50, 14916–14922.CrossRefGoogle Scholar
  11. [11]
    Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.CrossRefGoogle Scholar
  12. [12]
    Ezawa, M. Valley-polarized metals and quantum anomalous hall effect in silicene. Phys. Rev. Lett. 2012, 109, 055502.CrossRefGoogle Scholar
  13. [13]
    Ezawa, M. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 2012, 14, 033003.CrossRefGoogle Scholar
  14. [14]
    Scalise, E.; Houssa, M.; Pourtois, G.; van den Broek, B.; Afanas’ev, V.; Stesmans, A. Vibrational properties of silicene and germanene. Nano Res. 2013, 6, 19–28.CrossRefGoogle Scholar
  15. [15]
    Matthes, L.; Pulci, O.; Bechstedt, F. Optical properties of two-dimensional honeycomb crystals graphene, silicene, germanene, and tinene from first principles. New J. Phys. 2014, 16, 105007.CrossRefGoogle Scholar
  16. [16]
    Houssa, M.; Dimoulas, A.; Molle, A. Silicene: A review of recent experimental and theoretical investigations. J. Phys.: Condens. Matter 2015, 27, 253002.Google Scholar
  17. [17]
    Feng, B. J.; Ding, Z. J.; Meng, S.; Yao, Y. G.; He, X. Y.; Cheng, P.; Chen, L.; Wu, K. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 2012, 12, 3507–3511.CrossRefGoogle Scholar
  18. [18]
    Chiappe, D.; Grazianetti, C.; Tallarida, G.; Fanciulli, M.; Molle, A. Local electronic properties of corrugated silicene phases. Adv. Mat. 2012, 24, 5088–5093.CrossRefGoogle Scholar
  19. [19]
    Enriquez, H.; Vizzini, S.; Kara, A.; Lalmi, B.; Oughaddou, H. Silicene structures on silver surfaces. J. Phys.: Condens. Matter 2012, 24, 314211.Google Scholar
  20. [20]
    Tsoutsou, D.; Xenogiannopoulou, E.; Golias, E.; Tsipas, P.; Dimoulas, A. Evidence for hybrid surface metallic band in (4×4) silicene on Ag(111). Appl. Phys. Lett. 2013, 103, 231604.CrossRefGoogle Scholar
  21. [21]
    Moras, P.; Mentes, T. O.; Sheverdyaeva, P. M.; Locatelli, A.; Carbone, C. Coexistence of multiple silicene phases in silicon grown on Ag(111). J. Phys.: Condens. Matter 2014, 26, 185001.Google Scholar
  22. [22]
    Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 2012, 108, 245501.CrossRefGoogle Scholar
  23. [23]
    Lee, C. C.; Fleurence, A.; Yamada-Takamura, Y.; Ozaki, T.; Friedlein, R. Band structure of silicene on zirconium diboride (0001) thin-film surface: Convergence of experiment and calculations in the one-Si-atom Brillouin zone. Phys. Rev. B 2014, 90, 075422.CrossRefGoogle Scholar
  24. [24]
    Meng, L.; Wang, Y. L.; Zhang, L. Z.; Du, S. X.; Wu, R. T.; Li, L. F.; Zhang, Y.; Li, G.; Zhou, H. T.; Hofer, W. A. et al. Buckled silicene formation on Ir(111). Nano Lett. 2013, 13, 685–690.CrossRefGoogle Scholar
  25. [25]
    Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227–231.CrossRefGoogle Scholar
  26. [26]
    Jose, D.; Datta, A. Structures and chemical properties of silicene: unlike graphene. Acc. Chem. Res. 2014, 47, 593–602.CrossRefGoogle Scholar
  27. [27]
    Balendhran, S.; Walia, S.; Nili, H.; Sriram, S.; Bhaskaran, M. Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene. Small 2015, 11, 640–652.CrossRefGoogle Scholar
  28. [28]
    Lew Yan Voon, L. C.; Zhu, J. J.; Schwingenschlögl, U. Silicene: Recent theoretical advances. Appl. Phys. Rev. 2016, 3, 040802.CrossRefGoogle Scholar
  29. [29]
    Molle, A.; Goldberger, J.; Houssa, M.; Xu, Y.; Zhang, S. C.; Akinwande, D. Buckled two-dimensional Xene sheets. Nat. Mater. 2017, 16, 163–169.CrossRefGoogle Scholar
  30. [30]
    Houssa, M.; Pourtois, G.; Afanas’ev, V. V.; Stesmans, A. Can silicon behave like graphene? A first-principles study. Appl. Phys. Lett. 2010, 97, 112106.CrossRefGoogle Scholar
  31. [31]
    Scalise, E.; Houssa, M.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Pourtois, G.; Stesmans, A.; Fanciulli, M.; Molle, A. Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S, Se, Te) chalchogenide templates. 2D Mater. 2014, 1, 011010.CrossRefGoogle Scholar
  32. [32]
    Li, L. Y.; Zhao, M. W. Structures, energetics, and electronic properties of multifarious stacking patterns for high-buckled and low-buckled silicene on the MoS2 substrate. J. Phys. Chem. C 2014, 118, 19129–19138.CrossRefGoogle Scholar
  33. [33]
    Houssa, M.; van den Broek, B.; Scalise, E.; Pourtois, G.; Afanas’ev, V. V.; Stesmans, A. An electric field tunable energy band gap at silicene/(0001) ZnS interfaces. Phys. Chem. Chem. Phys. 2013, 15, 3702–3705.CrossRefGoogle Scholar
  34. [34]
    Molle, A.; Lamperti, A.; Rotta, D.; Fianciulli, M.; Cinquanta, E.; Grazianetti, C. Electron confinement at the Si/MoS2 heterosheet interface. Adv. Mater. Interfaces 2016, 3, 1500619.CrossRefGoogle Scholar
  35. [35]
    Scalise, E.; Houssa, M. Predicting 2D silicon allotropes on SnS2. Nano Res. 2017, 10, 1697–1079.CrossRefGoogle Scholar
  36. [36]
    Houssa, M.; Pourtois, G.; Heyns, M. M.; Afanas’ev, V. V.; Stesmans, A. Electronic properties of silicene: Insights from first-principles modeling. J. Electrochem. Soc. 2011, 158, H107–H110.CrossRefGoogle Scholar
  37. [37]
    Ding, Y.; Wang, Y. L. Electronic structures of silicene/GaS heterosheets. Appl. Phys. Lett. 2013, 103, 043114.CrossRefGoogle Scholar
  38. [38]
    Zhu, J. J.; Schwingenschlögl, U. Stability and electronic properties of silicene on WSe2. J. Mater. Chem. C 2015, 3, 3946–3953.CrossRefGoogle Scholar
  39. [39]
    Chiappe, D.; Scalise, E.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Fanciulli, M.; Houssa, M.; Molle, A. Twodimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 2014, 26, 2096–2101.CrossRefGoogle Scholar
  40. [40]
    Zhu, J. J.; Schwingenschlögl, U. Structural and electronic properties of silicene on MgX2 (X = Cl, Br, and I). ACS Appl. Mat. Interfaces 2014, 6, 11675–11681.CrossRefGoogle Scholar
  41. [41]
    Li, L. Y.; Wang, X. P.; Zhao, X. Y..; Zhao, M. W. Moiré superstructures of silicene on hexagonal boron nitride: A first-principles study. Phys. Lett. A 2013, 377, 2628–2632.CrossRefGoogle Scholar
  42. [42]
    Kokott, S.; Pflugradt, P.; Matthes, L.; Bechstedt, F. Nonmetallic substrates for growth of silicene: An ab initio prediction. J. Phys.: Condens. Matter 2014, 26, 185002.Google Scholar
  43. [43]
    Badylevich, M.; Shamuilia, S.; Afanas’ev, V. V.; Stesmans, A.; Fedorenko, Y. G.; Zhao, C. Electronic structure of the interface of aluminum nitride with Si(100). J. Appl. Phys. 2008, 104, 093713.CrossRefGoogle Scholar
  44. [44]
    Xu, Y. N.; Ching, W. Y. Electronic, optical, and structural properties of some wurtzite crystals. Phys. Rev. B 1993, 48, 4335–4351.CrossRefGoogle Scholar
  45. [45]
    Freeman, C. L.; Claeyssens, F.; Allan, N. L.; Harding, J. H. Graphitic nanofilms as precursors to wurtzite films: Theory. Phys. Rev. Lett. 2006, 96, 066102.CrossRefGoogle Scholar
  46. [46]
    Tsipas, P.; Kassavetis, S.; Tsoutsou, D.; Xenogiannopoulou, E.; Golias, E.; Giamini, S. A.; Grazianetti, C.; Chiappe, D.; Molle, A.; Fanciulli, M. et al. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111). Appl. Phys. Lett. 2013, 103, 251605.CrossRefGoogle Scholar
  47. [47]
    Kam, K. K.; Parkinson, B. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J. Chem. Phys. 1982, 86, 463–467.CrossRefGoogle Scholar
  48. [48]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinx, T. F. Atomically thin MoS2: A new direct-gap semiconductor Phys. Rev. Lett. 2010, 105, 136805.CrossRefGoogle Scholar
  49. [49]
    Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.CrossRefGoogle Scholar
  50. [50]
    Han, S. W.; Kwon, H.; Kim, S. K.; Ryu, S.; Yun, W. S.; Kim, D. H.; Hwang, J. H.; Kang, J.-S.; Baik, J.; Shin, H. J. et al. Band-gap transition induced by interlayer van der Waals interaction in MoS2. Phys. Rev. B 2011, 84, 045409.CrossRefGoogle Scholar
  51. [51]
    Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.CrossRefGoogle Scholar
  52. [52]
    Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709.CrossRefGoogle Scholar
  53. [53]
    Lebegue, S.; Eriksson, O. Electronic structure of twodimensional crystals from ab initio theory. Phys. Rev. B 2009, 79, 115409.CrossRefGoogle Scholar
  54. [54]
    Li, T. S.; Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 2007, 111, 16192–16196.CrossRefGoogle Scholar
  55. [55]
    Ataca, C.; Sahin, H.; Akturk, E.; Ciraci, S. Mechanical and electronic properties of MoS2 nanoribbons and their defects. J. Phys. Chem. C 2011, 115, 3934–3941.CrossRefGoogle Scholar
  56. [56]
    Langreth, D. C.; Dion, M.; Rydberg, H.; Schroeder, E.; Hyldgaard, P.; Lundqvis, B. I. Van der Waals density functional theory with applications. Int. J. Quant. Chem. 2005, 101, 599–610.CrossRefGoogle Scholar
  57. [57]
    Gao, N.; Li, J. C.; Jiang, Q. Tunable band gaps in silicene–MoS2 heterobilayers. Phys. Chem. Chem. Phys. 2014, 16, 11673–11678.CrossRefGoogle Scholar
  58. [58]
    Pflugradt, P.; Matthes, L.; Bechstedt, F. Silicene-derived phases on Ag(111) substrate versus coverage: Ab initio studies. Phys. Rev. B 2014, 89, 035403.CrossRefGoogle Scholar
  59. [59]
    Wilsonand, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335.CrossRefGoogle Scholar
  60. [60]
    Böker, Th.; Severin, R.; Müller, A.; Janowitz, C.; Manzke, R.; Voβ, D.; Krüger, P.; Mazur, A.; Pollmann, J. Band structure of MoS2, MoSe2, and α-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B 2001, 64, 235305.CrossRefGoogle Scholar
  61. [61]
    Cinquanta, E.; Scalise, E.; Chiappe, D.; Grazianetti, C.; van den Broek, B.; Houssam, M.; Fanciulli, M.; Molle, A. Getting through the nature of silicene: An sp2–sp3 two-dimensional silicon nanosheet. J. Phys. Chem. C 2013, 117, 16719–16724.CrossRefGoogle Scholar
  62. [62]
    Lew Yan Voon, L. C.; Sandberg, E.; Aga, R. S.; Farajian, A. A. Hydrogen compounds of group-IV nanosheets. Appl. Phys. Lett. 2010, 97, 163114.CrossRefGoogle Scholar
  63. [63]
    Houssa, M.; Scalise, E.; Sankaran, K.; Pourtois, G.; Afanas’ev, V. V.; Stesmans, A. Electronic properties of hydrogenated silicene and germanene. Appl. Phys. Lett. 2011, 98, 223107.CrossRefGoogle Scholar
  64. [64]
    Quhe, R. H.; Fei, R. X.; Liu, Q. H.; Zheng, J. X.; Li, H.; Xu, C. Y.; Ni, Z. Y.; Wang, Y. Y.; Yu, D. P.; Gao, Z. X. et al. Tunable and sizable band gap in silicene by surface adsorption. Sci. Rep. 2012, 2, 853.CrossRefGoogle Scholar
  65. [65]
    Ding, Y.; Wang, Y. L. Electronic structures of silicene fluoride and hydride. Appl. Phys. Lett. 2012, 100, 083102.CrossRefGoogle Scholar
  66. [66]
    van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas’ev, V. V.; Stesmans, A. First-principles electronic functionalization of silicene and germanene by adatom chemisorption. Appl. Surf. Sci. 2014, 291, 104–108.CrossRefGoogle Scholar
  67. [67]
    Kaloni, T. P.; Singh, N.; Schwingenschlögl, U. Prediction of a quantum anomalous Hall state in Co-decorated silicone. Phys. Rev. B 2014, 89, 035409.CrossRefGoogle Scholar
  68. [68]
    Li, S. S.; Zhang, C. W.; Yan, S. S.; Hu, S. J.; Ji, W. X.; Wang, P. J.; Li, P. Novel band structures in silicene on monolayer zinc sulfide substrate. J. Phys.: Condens. Matter 2014, 26, 395003.Google Scholar
  69. [69]
    Weber, M. J. Handbook of Laser Science and Technology; CRC Press: Boca Raton, 1986.Google Scholar
  70. [70]
    Northrup, J. E.; Neugebauer, J. Theory of GaN(\(10\bar 10\)) and (\(11\bar 20\)) surfaces. Phys. Rev. B 1996, 53, R10477.CrossRefGoogle Scholar
  71. [71]
    Filippetti, A.; Fiorentini, V.; Cappellini, G.; Bosin, A. Anomalous relaxations and chemical trends at III-V semiconductor nitride nonpolar surfaces. Phys. Rev. B 1999, 59, 8026–8031.CrossRefGoogle Scholar
  72. [72]
    Zhang, X. J.; Zhang, H. Y.; He, T.; Zhao, M. W. Sizedependent structural and electronic properties of ZnS nanofilms: An ab initio study. J. Appl. Phys. 2010, 108, 064317.CrossRefGoogle Scholar
  73. [73]
    Wander, A.; Schedin, F.; Steadman, P.; Norris, A.; McGrath, R.; Turner, T. S.; Thornton, G.; Harrison, N. M. Stability of polar oxide surfaces. Phys. Rev. Lett. 2001, 86, 3811–3814.CrossRefGoogle Scholar
  74. [74]
    Meyer B.; Marx, D. Density-functional study of the structure and stability of ZnO surfaces. Phys. Rev. B 2003, 67, 035403.CrossRefGoogle Scholar
  75. [75]
    Houssa, M.; van den Broek, B.; Scalise, E.; Pourtois, G.; Afanas’ev, V.; Stesmans, A. (Invited) theoretical study of silicene and germanene. ECS Trans. 2013, 53, 51–62.CrossRefGoogle Scholar
  76. [76]
    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.Google Scholar
  77. [77]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  78. [78]
    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Max-Planck-Institut für EisenforschungDüsseldorfGermany
  2. 2.Department of Physics and AstronomyUniversity of LeuvenLeuvenBelgium

Personalised recommendations