Nano Research

, Volume 11, Issue 3, pp 1599–1611 | Cite as

A systematic theoretical study on FeOx-supported single-atom catalysts: M1/FeOx for CO oxidation

  • Jinxia Liang
  • Qi Yu
  • Xiaofeng YangEmail author
  • Tao Zhang
  • Jun LiEmail author
Research Article


A single-atom catalyst (SAC) that was first proposed by us in 2011 has aroused significant recent interest. Among the various SACs, FeOx-based ones including Pt1/FeOx, Ir1/FeOx, Au1/FeOx, Ni1/FeOx, and Fe1/FeOx have been investigated either experimentally or theoretically for CO oxidation. However, a systematic study of FeOx-based SACs has not been conducted. For a comprehensive understanding of FeOx-supported single-metal-atom catalysts, extensive density functional theory calculations were carried out on the activities and catalytic mechanisms of SACs with the 3d, 4d, and 5d metals of group VIII to IB, i.e., M1/FeOx (M = Fe, Co, Ni, Cu; Ru, Rh, Pd, Ag; Os, Ir, Pt, Au) for CO oxidation. Remarkably, a new noble metal SAC, Pd1/FeOx, with high activity in CO oxidation was found and is predicted to be even better than the previously reported Pt1/FeOx and Ni1/FeOx. In comparison, other M1/FeOx SACs (M = Fe, Co, Cu; Ru, Rh, Ag; Os, Ir, Au) showed only low activities in CO oxidation. Moreover, the adsorption strength of CO on the single-atom active sites was found to be the key in determining the catalytic activity of these SACs for CO oxidation, because it governs the recoverability of oxygen vacancies on their surfaces in the formation of a second CO2 during CO oxidation. Our systematic studies of FeOx-supported SACs will help in understanding the fundamental mechanisms of the interactions between singly dispersed surface metal atoms and FeOx substrate and in designing highly active FeOx-supported SACs.


single-atom catalyst M1/FeOx density functional theory heterogeneous catalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge simulating discussion with Professor Qingfeng Ge. This work was supported by the National Natural Science Foundation of China (Nos. 21590792, 91645203, and 21521091 to J. L.; 21503046 to J. X. L. and 21203182 to X. F. Y.), and National Basic Research Program of China (No. 2013CB834603 to J. L.), Natural Science Foundation of Guizhou Province of China (No. QKJ[2015]2122), Natural Science foundation of Department of Education of Guizhou Province (Nos. QJTD[2015]55 and ZDXK[2014]18) and the GZEU start up package. The calculations were done using supercomputers at Tsinghua National Laboratory for Information Science and Technology, the State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University), and Guizhou Provincial High-Performance Computing Center of Condensed Materials and Molecular Simulation. This project is partially supported by the Open Fund of Shaanxi Key Laboratory of Catalysis to J. X. L. (No. SXKLC-2017-01).

Supplementary material

12274_2017_1775_MOESM1_ESM.pdf (653 kb)
A systematic theoretical study on FeOx-supported single-atom catalysts: M1/FeOx for CO oxidation


  1. [1]
    Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.CrossRefGoogle Scholar
  2. [2]
    Gómez-Cortés, A.; Díaz, G.; Zanella, R.; Ramírez, H.; Santiago, P.; Saniger, J. M. Au-Ir/TiO2 Prepared by deposition precipitation with urea: Improved activity and stability in CO oxidation. J. Phys. Chem. C 2009, 113, 9710–9720.CrossRefGoogle Scholar
  3. [3]
    Huang, Y. Q.; Wang, A. Q.; Li, L.; Wang, X. D.; Su, D. S.; Zhang, T. “Ir-in-ceria”: A highly selective catalyst for preferential CO oxidation. J. Catal. 2008, 255, 144–152.CrossRefGoogle Scholar
  4. [4]
    Wang, H. T.; Feng, Q.; Cheng, Y. C.; Yao, Y. B.; Wang, Q. X.; Li, K.; Schwingenschlögl, U.; Zhang, X. X.; Yang, W. Atomic bonding between metal and graphene. J. Phys. Chem. C 2013, 117, 4632–4638.CrossRefGoogle Scholar
  5. [5]
    Wang, Y. G.; Yoon, Y.; Glezakou, V. A.; Li, J.; Rousseau, R. The role of reducible oxide–metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. J. Am. Chem. Soc. 2013, 135, 10673–10683.CrossRefGoogle Scholar
  6. [6]
    Xu, B. Q.; Wei, J. M.; Yu, Y. T.; Li, Y.; Li, J. L.; Zhu, Q. M. Size limit of support particles in an oxide-supported metal catalyst: Nanocomposite Ni/ZrO2 for utilization of natural gas. J. Phys. Chem. B 2003, 107, 5203–5207.CrossRefGoogle Scholar
  7. [7]
    Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166.CrossRefGoogle Scholar
  8. [8]
    Lin, J.; Wang, A. Q.; Qiao, B. T.; Liu, X. Y.; Yang, X. F.; Wang, X. D.; Liang, J. X.; Li, J.; Liu, J. Y.; Zhang, T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317.CrossRefGoogle Scholar
  9. [9]
    Liang, J. X.; Wang, Y. G.; Yang, X. F.; Xing, D. H.; Wang, A. Q.; Zhang, T.; Li, J. Recent advances in single-atom catalysis. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Scott, R. A., Eds.; John Wiley & Sons, Inc.: London, 2017; pp 1–11.Google Scholar
  10. [10]
    Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.CrossRefGoogle Scholar
  11. [11]
    Guo, X. G.; Fang, G. Z.; Li, G.; Ma, H.; Fan, H. J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. H.; Wei, M. M. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 2014, 344, 616–619.CrossRefGoogle Scholar
  12. [12]
    Lin, J.; Qiao, B. T.; Li, N.; Li, L.; Sun, X. C.; Liu, J. Y.; Wang, X. D.; Zhang, T. Little do more: A highly effective Pt1/FeOx single-atom catalyst for the reduction of NO by H2. Chem. Commun. 2015, 51, 7911–7914.CrossRefGoogle Scholar
  13. [13]
    Hou, C.; Zhao, G. F.; Ji, Y. J.; Niu, Z. Q.; Wang, D. S.; Li, Y. D. Hydroformylation of alkenes over rhodium supported on the metal-organic framework ZIF-8. Nano Res. 2014, 7, 1364–1369.CrossRefGoogle Scholar
  14. [14]
    Wang, Y.; Chen, Z.; Shen, R. A.; Cao, X.; Chen, Y. G.; Chen, C.; Wang, D. S.; Peng, Q.; Li, Y. D. Pd-dispersed CuS hetero-nanoplates for selective hydrogenation of phenylacetylene. Nano Res. 2016, 9, 1209–1219.CrossRefGoogle Scholar
  15. [15]
    Huang, Z. W.; Gu, X.; Cao, Q. Q.; Hu, P. P.; Hao, J. M.; Li, J. H.; Tang, X. F. Catalytically active single-atom sites fabricated from silver particles. Angew. Chem., Int. Ed. 2012, 124, 4274–4279.CrossRefGoogle Scholar
  16. [16]
    Wang, L.; Zhang, S. R.; Zhu, Y.; Patlolla, A.; Shan, J. J.; Yoshida, H.; Takeda, S.; Frenkel, A. I.; Tao, F. Catalysis and in situ studies of Rh1/Co3O4 nanorods in reduction of NO with H2. ACS Catal. 2013, 3, 1011–1019.CrossRefGoogle Scholar
  17. [17]
    Kwak, J. H.; Kovarik, L.; Szanyi, J. Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts. ACS Catal. 2013, 3, 2094–2100.CrossRefGoogle Scholar
  18. [18]
    Chu, M. W.; Chen, C. H. Chemical mapping and quantification at the atomic scale by scanning transmission electron microscopy. ACS Nano 2013, 7, 4700–4707.CrossRefGoogle Scholar
  19. [19]
    Lin, S.; Ye, X. X.; Johnson, R. S.; Guo, H. First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) doped hexagonal boron nitride nanosheets: Stability and catalysis of CO oxidation. J. Phys. Chem. C 2013, 117, 17319–17326.CrossRefGoogle Scholar
  20. [20]
    Sun, S. H.; Zhang, G. X.; Gauquelin, N.; Chen, N.; Zhou, J. G.; Yang, S. L.; Chen, W. F.; Meng, X. B.; Geng, D. S.; Banis, M. N. et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 2013, 3, 1775.CrossRefGoogle Scholar
  21. [21]
    Moses-DeBusk, M.; Yoon, M.; Allard, L. F.; Mullins, D. R.; Wu, Z. L.; Yang, X. F.; Veith, G.; Stocks, G. M.; Narula, C. K. CO oxidation on supported single Pt atoms: Experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 2013, 135, 12634–12645.CrossRefGoogle Scholar
  22. [22]
    Guo, Z.; Liu, B.; Zhang, Q. H.; Deng, W. P.; Wang, Y.; Yang, Y. H. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 2014, 43, 3480–3524.CrossRefGoogle Scholar
  23. [23]
    Xing, J.; Chen, J. F.; Li, Y. H.; Yuan, W. T.; Zhou, Y.; Zheng, L. R.; Wang, H. F.; Hu, P.; Wang, Y.; Zhao, H. J. et al. Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution. Chem.—Eur. J. 2014, 20, 2138–2144.CrossRefGoogle Scholar
  24. [24]
    Flytzani-Stephanopoulos, M. Gold atoms stabilized on various supports catalyze the water–gas shift reaction. Acc. Chem. Res. 2014, 47, 783–792.CrossRefGoogle Scholar
  25. [25]
    Long, B.; Tang, Y.; Li, J. New mechanistic pathways for CO oxidation catalyzed by single-atom catalysts: Supported and doped Au1/ThO2. Nano Res. 2016, 9, 3868–3880.CrossRefGoogle Scholar
  26. [26]
    Liang, J. X.; Yang, X. F.; Xu, C. Q.; Zhang, T.; Li, J. On the catalytic activities of single-atom catalysts for CO oxidation: Pt1/FeOx vs. Fe1/FeOtx. Chin. J. Catal., in press, DOI: 10.1016/S1872-2067(17)62879-1.Google Scholar
  27. [27]
    Nie, G. Y.; Li, P.; Liang, J. X.; Zhu, C. Theoretical investigation on the photocatalytic activity of the Au/g-C3N4 monolayer. J. Theor. Comput. Chem. 2017, 16, 1750013.CrossRefGoogle Scholar
  28. [28]
    Liu, J. C.; Wang, Y. G.; Li, J. Toward rational design of oxide-supported single-atom catalysts: Atomic dispersion of gold on ceria. J. Am. Chem. Soc. 2017, 139, 6190–6199.CrossRefGoogle Scholar
  29. [29]
    Tang, Y.; Zhao, S.; Long, B.; Liu, J. C.; Li, J. On the nature of support effects of metal dioxides MO2 (M = Ti, Zr, Hf, Ce, Th) in single-atom gold catalysts: Importance of quantum primogenic effect. J. Phys. Chem. C 2016, 120, 17514–17526.CrossRefGoogle Scholar
  30. [30]
    Wang, Y. G.; Mei, D. H.; Glezakou, V. A.; Li, J.; Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 2015, 6, 6511.CrossRefGoogle Scholar
  31. [31]
    Zhang, S. R.; Nguyen, L.; Liang, J. X.; Shan, J. J.; Liu, J. Y.; Frenkel, A. I.; Patlolla, A.; Huang, W. X.; Li, J.; Tao, F. Catalysis on singly dispersed bimetallic sites. Nat. Commun. 2015, 6, 7938.CrossRefGoogle Scholar
  32. [32]
    Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudosingle- atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.CrossRefGoogle Scholar
  33. [33]
    Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.CrossRefGoogle Scholar
  34. [34]
    Lin, F. H.; Chen, W.; Liao, Y. H.; Doong, R. A.; Li, Y. D. Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures. Nano Res. 2011, 4, 1223–1232.CrossRefGoogle Scholar
  35. [35]
    Li, Z. Y.; Yuan, Z.; Li, X. N.; Zhao, Y. X.; He, S. G. CO oxidation catalyzed by single gold atoms supported on aluminum oxide clusters. J. Am. Chem. Soc. 2014, 136, 14307–14313.CrossRefGoogle Scholar
  36. [36]
    Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.CrossRefGoogle Scholar
  37. [37]
    Yang, S.; Tak, Y. J.; Kim, J.; Soon, A.; Lee, H. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 2017, 7, 1301–1307.CrossRefGoogle Scholar
  38. [38]
    Zhang, T. A new photochemical synthesis strategy for monoatomic palladium catalyst. Acta Phys. Chim. Sin. 2016, 32, 1551–1552.Google Scholar
  39. [39]
    Guan, H. L.; Lin, J.; Qiao, B. T.; Miao, S.; Wang, A. Q.; Wang, X. D.; Zhang, T. Enhanced performance of Rh1/TiO2 catalyst without methanation in water-gas shift reaction. AlChE J. 2017, 63, 2081–2088.CrossRefGoogle Scholar
  40. [40]
    Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638.CrossRefGoogle Scholar
  41. [41]
    Xu, G.; Wei, H. S.; Ren, Y. J.; Yin, J. Z.; Wang, A. Q.; Zhang, T. Chemoselective hydrogenation of 3-nitrostyrene over a Pt/FeOx pseudo-single-atom-catalyst in CO2-expanded liquids. Green Chem. 2016, 18, 1332–1338.CrossRefGoogle Scholar
  42. [42]
    Wang, C. L.; Gu, X. K.; Yan, H.; Lin, Y.; Li, J. J.; Liu, D. D.; Li, W. X.; Lu, J. L. Water-mediated mars–van krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal. 2017, 7, 887–891.CrossRefGoogle Scholar
  43. [43]
    Yang, T.; Fukuda, R.; Hosokawa, S.; Tanaka, T.; Sakaki, S.; Ehara, M. A Theoretical investigation on CO oxidation by single-atom catalysts M1/γ-Al2O3 (M = Pd, Fe, Co, and Ni). ChemCatChem 2017, 9, 1222–1229.CrossRefGoogle Scholar
  44. [44]
    Liu, J. Y. Catalysis by supported single metal atoms. ACS Catal. 2017, 7, 34–59.CrossRefGoogle Scholar
  45. [45]
    Tang, Y.; Wang, Y. G.; Liang, J. X.; Li, J. A DFT+U study of water adsorption and dissociation on Au1/CeO2 single-atom catalyst (SAC). Chin. J. Catal. 2017, 38, doi: 10.1016/S1872-2067(17)62829-8.Google Scholar
  46. [46]
    Liu, Q. F.; Liu, Y.; Li, H. B.; Li, L. L.; Deng, D. H.; Yang, F.; Bao, X. H. Towards the atomic-scale characterization of isolated iron sites confined in a nitrogen-doped graphene matrix. Appl. Surf. Sci. 2017, 410, 111–116.CrossRefGoogle Scholar
  47. [47]
    Cao, X. R. Insight into mechanism and selectivity of propane dehydrogenation over the Pd-doped Cu(111) surface. RSC Adv. 2016, 6, 65524–65532.CrossRefGoogle Scholar
  48. [48]
    Li, C. Single Co atom catalyst stabilized in C/N containing matrix. Chin. J. Catal. 2016, 37, 1443–1445.CrossRefGoogle Scholar
  49. [49]
    Zhang, H. B.; Wei, J.; Dong, J. C.; Liu, G. G.; Shi, L.; An, P. F.; Zhao, G. X.; Kong, J. T.; Wang, X. J.; Meng, X. G. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal–organic framework. Angew. Chem., Int. Ed. 2016, 128, 14522–14526.CrossRefGoogle Scholar
  50. [50]
    Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.CrossRefGoogle Scholar
  51. [51]
    Liu, J. L.; Lucci, F. R.; Yang, M.; Lee, S.; Marcinkowski, M. D.; Therrien, A. J.; Williams, C. T.; Sykes, E. C. H.; Flytzani-Stephanopoulos, M. Tackling CO poisoning with single-atom alloy catalysts. J. Am. Chem. Soc. 2016, 138, 6396–6399.CrossRefGoogle Scholar
  52. [52]
    Huang, X. H.; Xia, Y. J.; Cao, Y. J.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Ma, C.; Wang, H. W.; Li, J. J.; You, R. et al. Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation. Nano Res. 2017, 10, 1302–1312.CrossRefGoogle Scholar
  53. [53]
    Wang, C. Y.; Garbarino, G.; Allard, L. F.; Wilson, F.; Busca, G.; Flytzani-Stephanopoulos, M. Low-temperature dehydrogenation of ethanol on atomically dispersed gold supported on ZnZrOx. ACS Catal. 2016, 6, 210–218.CrossRefGoogle Scholar
  54. [54]
    Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.CrossRefGoogle Scholar
  55. [55]
    Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Singleatom electrocatalysts. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.201703864.Google Scholar
  56. [56]
    Liang, J. X.; Lin, J.; Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Liu, J. Y.; Zhang, T.; Li, J. Theoretical and experimental investigations on single-atom catalysis: Ir1/FeOx for CO oxidation. J. Phys. Chem. C 2014, 118, 21945–21951.CrossRefGoogle Scholar
  57. [57]
    Qiao, B. T.; Liang, J. X.; Wang, A. Q.; Xu, C. Q.; Li, J.; Zhang, T.; Liu, J. J. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 2015, 8, 2913–2924.CrossRefGoogle Scholar
  58. [58]
    Qiao, B. T.; Liang, J. X.; Wang, A. Q.; Liu, J. Y.; Zhang, T. Single atom gold catalysts for low-temperature CO oxidation. Chin. J. Catal. 2016, 37, 1580–1586.CrossRefGoogle Scholar
  59. [59]
    Liang, J. X.; Yang, X. F.; Wang, A. Q.; Zhang, T.; Li, J. Theoretical investigations of non-noble metal single-atom catalysis: Ni1/FeOx for CO oxidation. Catal. Sci. Technol. 2016, 6, 6886–6892.CrossRefGoogle Scholar
  60. [60]
    Li, F. Y.; Li, Y. F.; Zeng, X. C.; Chen, Z. F. Exploration of high-performance single-atom catalysts on support M1/FeOx for CO oxidation via computational study. ACS Catal. 2015, 5, 544–552.CrossRefGoogle Scholar
  61. [61]
    Zhang, T. Theoretical design of oxide-supported single atom catalysts. Acta Phys. Chim. Sin. 2017, 33, 1–9.Google Scholar
  62. [62]
    Gardner, S. D.; Hoflund, G. B.; Upchurch, B. T.; Schryer, D. R.; Kielin, E. J.; Schryer, J. Comparison of the performance characteristics of Pt/SnOx and Au/MnOx catalysts for low-temperature CO oxidation. J. Catal. 1991, 129, 114–120.CrossRefGoogle Scholar
  63. [63]
    Liu, J. F.; Chen, W.; Liu, X. W.; Zhou, K. B.; Li, Y. D. Au/LaVO4 nanocomposite: Preparation, characterization, and catalytic activity for CO oxidation. Nano Res. 2008, 1, 46–55.CrossRefGoogle Scholar
  64. [64]
    Hu, L. H.; Sun, K. Q.; Peng, Q.; Xu, B. Q.; Li, Y. D. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res. 2010, 3, 363–368.CrossRefGoogle Scholar
  65. [65]
    Chen, S. F.; Li, J. P.; Qian, K.; Xu, W. P.; Lu, Y.; Huang, W. X.; Yu, S. H. Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Res. 2010, 3, 244–255.CrossRefGoogle Scholar
  66. [66]
    Lin, J.; Wang, X. D.; Zhang, T. Recent progress in CO oxidation over Pt-group-metal catalysts at low temperatures. Chin. J. Catal. 2016, 37, 1805–1813.CrossRefGoogle Scholar
  67. [67]
    Wang, Y. G.; Yang, X. F.; Li, J. Theoretical studies of CO oxidation with lattice oxygen on Co3O4 surfaces. Chin. J. Catal. 2016, 37, 193–198.CrossRefGoogle Scholar
  68. [68]
    Wu, B. H.; Zhang, H.; Chen, C.; Lin, S. C.; Zheng, N. F. Interfacial activation of catalytically inert Au (6.7 nm)-Fe3O4 dumbbell nanoparticles for CO oxidation. Nano Res. 2009, 2, 975–983.CrossRefGoogle Scholar
  69. [69]
    Gokhale, A. A.; Dumesic, J. A.; Mavrikakis, M. On the mechanism of low-temperature water gas shift reaction on copper. J. Am. Chem. Soc. 2008, 130, 1402–1414.CrossRefGoogle Scholar
  70. [70]
    Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938.CrossRefGoogle Scholar
  71. [71]
    Song, C. S. Fuel processing for low-temperature and hightemperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century. Catal. Today 2002, 77, 17–49.CrossRefGoogle Scholar
  72. [72]
    Abbet, S.; Heiz, U.; Häkkinen, H.; Landman, U. CO oxidation on a single Pd atom supported on magnesia. Phys. Rev. Lett. 2001, 86, 5950–5953.CrossRefGoogle Scholar
  73. [73]
    Okumura, M.; Masuyama, N.; Konishi, E.; Ichikawa, S.; Akita, T. CO oxidation below room temperature over Ir/TiO2 catalyst prepared by deposition precipitation method. J. Catal. 2002, 208, 485–489.CrossRefGoogle Scholar
  74. [74]
    Wang, Y. G.; Mei, D. H.; Li, J.; Rousseau, R. A DFT+U study on the localized electronic states and their potential role during H2O dissociation and CO oxidation processes on CeO2(111) surface. J. Phys. Chem. C 2013, 117, 23082–23089.CrossRefGoogle Scholar
  75. [75]
    Sandratskii, L. M.; Uhl, M.; Kübler, J. Band theory for electronic and magnetic properties of a-Fe2O3. J. Phys. Condens. Matter 1996, 8, 983–989.CrossRefGoogle Scholar
  76. [76]
    Wang, X. G.; Weiss, W.; Shaikhutdinov, S. K.; Ritter, M.; Petersen, M.; Wagner, F.; Schlögl, R.; Scheffler, M. The hematite (a-Fe2O3) (0001) surface: Evidence for domains of distinct chemistry. Phys. Rev. Lett. 1998, 81, 1038–1041.CrossRefGoogle Scholar
  77. [77]
    Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.CrossRefGoogle Scholar
  78. [78]
    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.CrossRefGoogle Scholar
  79. [79]
    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.CrossRefGoogle Scholar
  80. [80]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1997, 77, 3865–3868.CrossRefGoogle Scholar
  81. [81]
    Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Szotek, Z.; Temmerman, W. M.; Sutton, A. P. Electronic structure and elastic properties of strongly correlated metal oxides from first principles: LSDA + U, SIC-LSDA and EELS study of UO2 and NiO. Phys. Stat. Sol. (A) 1998, 166, 429–443.CrossRefGoogle Scholar
  82. [82]
    Henkelman, G.; Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 1999, 111, 7010–7022.CrossRefGoogle Scholar
  83. [83]
    Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295.CrossRefGoogle Scholar
  84. [84]
    Hinshelwood, C. N. The Kinetics of Chemical Change; Clarendon: Oxford, UK, 1940.Google Scholar
  85. [85]
    Yoshioka, Y.; Schaefer III, H. F.; Jordan, K. D. Theoretical investigation of the electron affinity of CO2. J. Chem. Phys. 1981, 75, 1040–1041.CrossRefGoogle Scholar
  86. [86]
    Pan, Y. X.; Liu, C. J.; Wiltowski, T. S.; Ge, Q. F. CO2 adsorption and activation over γ-Al2O3-supported transition metal dimers: A density functional study. Catal. Today 2009, 147, 68–76.CrossRefGoogle Scholar
  87. [87]
    Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 2009, 21, 084204.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing TechnologyGuizhou Education UniversityGuiyangChina
  2. 2.Shaanxi Key Laboratory of CatalysisShaanxi University of TechnologyHanzhongChina
  3. 3.Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of EducationTsinghua UniversityBeijingChina
  4. 4.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations