Nano Research

, Volume 11, Issue 3, pp 1575–1588 | Cite as

Device performance and light characteristics stability of quantum-dot-based white-light-emitting diodes

  • Bruno Clasen Hames
  • Iván Mora-Seró
  • Rafael S. SánchezEmail author
Research Article


Advances in image quality in recent decades have made it necessary to develop new technologies for producing displays to meet remarkably stricter standards. The display market is governed mainly by liquid crystal display and light-emitting diode (LED) technology; however, it suffers from limitations that can be overcome by developing the next generation of electroluminescent displays. The introduction of colloidal quantum dots (QDs) as down-converters has enabled the production of displays with extremely high color purity and gamut. Therefore, colloidal nanocrystals are excellent candidates for the preparation of electroluminescent devices, which represent a straightforward approach to the development of unprecedented high-quality displays. We synthesized light-emitting QDs covering the entire visible spectrum with high fluorescence quantum yields and color purity, and produced high-brightness single-color LEDs with external quantum efficiencies of 0.39%, 1.04%, 2.10%, and 1.30% for red-, orange-, green-, and blue-emitting dots, respectively. Additionally, white LEDs were prepared by mixing QDs; they showed color temperatures of 5,300 K and color rendering indices exceeding 80%. Very importantly, we exhaustively characterized the LED performance, including the response time, stability, and evolution of the light characteristics, thus providing crucial information toward the development of high-quality electroluminescent displays.


colloidal quantum dots quantum dot light-emitting diodes white light-emitting diode (LED) displays electroluminescence LED stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work was supported by MINECO of Spain (No. MAT2016-76892-C3-1-R) and by Generalitat Valenciana (No. PROMETEOII/2014/020). B. C. H. is grateful to the support of the National Council of Technological and Scientific Development (CNPq), Brazil, through the Science without Borders program.

Supplementary material

12274_2017_1773_MOESM1_ESM.pdf (1.9 mb)
Device performance and light characteristics stability of quantum-dot-based white-light-emitting diodes


  1. [1]
    Ekimov, A. I.; Onushchenko, A. A. Quantum size effect in three-dimensional microscopic semiconductor crystals. J. Exp. Theoret. Phys. Lett. 1981, 34, 345.Google Scholar
  2. [2]
    Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004, 4, 11–18.CrossRefGoogle Scholar
  3. [3]
    Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.; Imani, M.; Seifalian, A. M. Biological applications of quantum dots. Biomaterials 2007, 28, 4717–4732.CrossRefGoogle Scholar
  4. [4]
    Ko, D. K.; Maurano, A.; Suh, S. K.; Kim, D.; Hwang, G. W.; Grossman, J. C.; Bulovic, V.; Bawendi, M. G. Photovoltaic performance of PBS quantum dots treated with metal salts. ACS Nano 2016, 10, 3382–3388.CrossRefGoogle Scholar
  5. [5]
    Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. Quantum dots: CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2584.CrossRefGoogle Scholar
  6. [6]
    Liu, M. X.; Voznyy, O.; Sabatini, R.; de Arquer, F. P. G.; Munir, R.; Balawi, A. H.; Lan, X. Z.; Fan, F. J.; Walters, G.; Kirmani, A. R. et al. Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 2017, 16, 258–263.CrossRefGoogle Scholar
  7. [7]
    Liu, M. X.; de Arquer, F. P. G.; Li, Y. Y.; Lan, X. Z.; Kim, G. H.; Voznyy, O.; Jagadamma, L. K.; Abbas, A. S.; Hoogland, S.; Lu, Z. H. et al. Double-sided junctions enable high-performance colloidal-quantum-dot photovoltaics. Adv. Mater. 2016, 28, 4142–4148.CrossRefGoogle Scholar
  8. [8]
    Kim, G. H.; de Arquer, F. P. G.; Yoon, Y. J.; Lan, X. Z.; Liu, M. X.; Voznyy, O.; Yang, Z. Y.; Fan, F. J.; Ip, A. H.; Kanjanaboos, P. et al. High-efficiency colloidal quantum dot photovoltaics via robust self-assembled monolayers. Nano Lett. 2015, 15, 7691–7696.CrossRefGoogle Scholar
  9. [9]
    Rekemeyer, P. H.; Chang, S.; Chuang, C. H. M.; Hwang, G. W.; Bawendi, M. G.; Gradecak, S. Enhanced photocurrent in pbs quantum dot photovoltaics via ZnO nanowires and band alignment engineering. Advanced Energy Materials 2016, 6, 1600848.CrossRefGoogle Scholar
  10. [10]
    Sargent, E.; McDonald, S. A.; Zhang, S. G.; Levina, L.; Konstantatos, G.; Cyr, P. Three-dimensional bicontinuous heterostructures, method of making, and their application in quantum dot-polymer nanocomposite photodetectors and photovoltaics. U. S. Patents 20130244366, September 19, 2013.Google Scholar
  11. [11]
    Lhuillier, E.; Scarafagio, M.; Hease, P.; Nadal, B.; Aubin, H.; Xu, X. Z.; Lequeux, N.; Patriarche, G.; Ithurria, S.; Dubertret, B. Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to thz. Nano Lett. 2016, 16, 1282–1286.CrossRefGoogle Scholar
  12. [12]
    Hwang, D. K.; Lee, Y. T.; Lee, H. S.; Lee, Y. J.; Shokouh, S. H.; Kyhm, J. h.; Lee, J.; Kim, H. H.; Yoo, T. H.; Nam, S. H. et al. Ultrasensitive pbs quantum-dot-sensitized InGaZnO hybrid photoinverter for near-infrared detection and imaging with high photogain. NPG Asia Mater. 2016, 8, e233.CrossRefGoogle Scholar
  13. [13]
    Gao, J. B.; Nguyen, S. C.; Bronstein, N. D.; Alivisatos, A. P. Solution-processed, high-speed, and high-quantum-efficiency quantum dot infrared photodetectors. ACS Photonics 2016, 3, 1217–1222.CrossRefGoogle Scholar
  14. [14]
    Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High-efficiency quantum-dot lightemitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407–412.CrossRefGoogle Scholar
  15. [15]
    Lee, K. H.; Lee, J. H.; Song, W. S.; Ko, H.; Lee, C.; Lee, J. H.; Yang, H. Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices. ACS Nano 2013, 7, 7295–7302.CrossRefGoogle Scholar
  16. [16]
    Lee, K. H.; Lee, J. H.; Kang, H. D.; Park, B.; Kwon, Y.; Ko, H.; Lee, C.; Lee, J.; Yang, H. Over 40 cd/a efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots. ACS Nano 2014, 8, 4893–4901.CrossRefGoogle Scholar
  17. [17]
    Zhang, H.; Wang, S. T.; Sun, X. W.; Chen, S. M. Solutionprocessed vanadium oxide as an efficient hole injection layer for quantum-dot light-emitting diodes. J. Mater. Chem. C 2017, 5, 817–823.CrossRefGoogle Scholar
  18. [18]
    Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solutionprocessed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.CrossRefGoogle Scholar
  19. [19]
    Sanchez, R. S.; Binetti, E.; Torre, J. A.; Garcia-Belmonte, G.; Striccoli, M.; Mora-Sero, I. All solution processed low turn-on voltage near infrared leds based on core–shell PbS-CdS quantum dots with inverted device structure. Nanoscale 2014, 6, 8551–8555.CrossRefGoogle Scholar
  20. [20]
    Anikeeva, P. O.; Halpert, J. E.; Bawendi, M. G.; Bulovic, V. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett. 2009, 9, 2532–2536.CrossRefGoogle Scholar
  21. [21]
    Moreels, I.; Justo, Y.; de Geyter, B.; Haustraete, K.; Martins, J. C.; Hens, Z. Size-tunable, bright, and stable PbS quantum dots: A surface chemistry study. ACS Nano 2011, 5, 2004–2012.CrossRefGoogle Scholar
  22. [22]
    Steckel, J. S.; Ho, J.; Hamilton, C.; Xi, J. Q.; Breen, C.; Liu, W. H.; Allen, P.; Coe-Sullivan, S. Quantum dots: The ultimate down-conversion material for LCD displays. J. Soc. Inf. Display 2015, 23, 294–305.CrossRefGoogle Scholar
  23. [23]
    Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulovic, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23.CrossRefGoogle Scholar
  24. [24]
    Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. G.; Holloway, P. H.; Qian, L. Highefficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 2015, 9, 259–266.CrossRefGoogle Scholar
  25. [25]
    Lee, K. H.; Han, C. Y.; Kang, H. D.; Ko, H.; Lee, C.; Lee, J.; Myoung, N.; Yim, S. Y.; Yang, H. Highly efficient, color-reproducible full-color electroluminescent devices based on red/green/blue quantum dot-mixed multilayer. ACS Nano 2015, 9, 10941–10949.CrossRefGoogle Scholar
  26. [26]
    Han, J.; Bong, J.; Lim, T.; Lee, K. H.; Yang, H.; Ju, S. Water repellent spray-type encapsulation of quantum dot light-emitting diodes using super-hydrophobic self-assembled nanoparticles. Appl. Surf. Sci. 2015, 353, 338–341.CrossRefGoogle Scholar
  27. [27]
    Qian, L.; Zheng, Y.; Xue, J. G.; Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 2011, 5, 543–548.CrossRefGoogle Scholar
  28. [28]
    Bae, W. K.; Park, Y. S.; Lim, J.; Lee, D.; Padilha, L. A.; McDaniel, H.; Robel, I.; Lee, C.; Pietryga, J. M.; Klimov, V. I. Controlling the influence of auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 2013, 4, 2661.CrossRefGoogle Scholar
  29. [29]
    Caruge, J. M.; Halpert, J. E.; Wood, V.; Bulovic, V.; Bawendi, M. G. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat. Photonics 2008, 2, 247–250.CrossRefGoogle Scholar
  30. [30]
    Anikeeva, P. O.; Halpert, J. E.; Bawendi, M. G.; Bulovic, V. Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer. Nano Lett. 2007, 7, 2196–2200.CrossRefGoogle Scholar
  31. [31]
    Kim, T. H.; Cho, K. S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J. Y.; Amaratunga, G.; Lee, S. Y. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 2011, 5, 176–182.CrossRefGoogle Scholar
  32. [32]
    Wood, V.; Panzer, M. J.; Chen, J. L.; Bradley, M. S.; Halpert, J. E.; Bawendi, M. G.; Bulovic, V. Inkjet-printed quantum dot-polymer composites for full-color ac-driven displays. Adv. Mater. 2009, 21, 2151–2155.CrossRefGoogle Scholar
  33. [33]
    Kim, K.; Woo, J. Y.; Jeong, S.; Han, C. S. Photoenhancement of a quantum dot nanocomposite via uv annealing and its application to white leds. Adv. Mater. 2011, 23, 911–914.CrossRefGoogle Scholar
  34. [34]
    Bae, W. K.; Char, K.; Hur, H.; Lee, S. Single-step synthesis of quantum dots with chemical composition gradients. Chem. Mater. 2008, 20, 531–539.CrossRefGoogle Scholar
  35. [35]
    Rurack, K.; Spieles, M. Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600–1,000 nm. Anal. Chem. 2011, 83, 1232–1242.CrossRefGoogle Scholar
  36. [36]
    Bender, V. C.; Marchesan, T. B.; Alonso, J. M. Solid-state lighting: A concise review of the state of the art on led and oled modeling. IEEE Ind. Electronics Mag. 2015, 9, 6–16.CrossRefGoogle Scholar
  37. [37]
    Chen, H. T.; Hui, S. Y. Dynamic prediction of correlated color temperature and color rendering index of phosphor-coated white light-emitting diodes. IEEE Trans. Ind. Electronics 2014, 61, 784–797.CrossRefGoogle Scholar
  38. [38]
    Shimizu, K. T.; Woo, W. K.; Fisher, B. R.; Eisler, H. J.; Bawendi, M. G. Surface-enhanced emission from single semiconductor nanocrystals. Phys. Rev. Lett. 2002, 89, 117401.CrossRefGoogle Scholar
  39. [39]
    Murase, S.; Yang, Y. Solution processed moo3 interfacial layer for organic photovoltaics prepared by a facile synthesis method. Adv. Mater. 2012, 24, 2459–2462.CrossRefGoogle Scholar
  40. [40]
    Cho, A.; Kim, S.; Kim, S.; Cho, W.; Park, C.; Kim, F. S.; Kim, J. H. Influence of imidazole-based acidity control of PEDOT:PSS on its electrical properties and environmental stability. J. Polym. Sci. B: Polym. Phys. 2016, 54, 1530–1536.CrossRefGoogle Scholar
  41. [41]
    Jasieniak, J. J.; Seifter, J.; Jo, J.; Mates, T.; Heeger, A. J. A solution-processed MoOx anode interlayer for use within organic photovoltaic devices. Adv. Funct. Mater. 2012, 22, 2594–2605.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Bruno Clasen Hames
    • 1
  • Iván Mora-Seró
    • 1
  • Rafael S. Sánchez
    • 1
    Email author
  1. 1.Institute of Advanced Materials (INAM)Universitat Jaume ICastellóSpain

Personalised recommendations