Nano Research

, Volume 11, Issue 3, pp 1554–1562 | Cite as

Dip-coating processed sponge-based electrodes for stretchable Zn-MnO2 batteries

  • Hong-Wu Zhu
  • Jin Ge
  • Yu-Can Peng
  • Hao-Yu Zhao
  • Lu-An Shi
  • Shu-Hong YuEmail author
Research Article


Stretchable electronics are in high demand for next-generation wearable devices, but their fabrication is still challenging. Stretchable conductors, flexible pressure sensors, and foldable light-emitting diodes (LEDs) have been reported; however, the fabrication of stable stretchable batteries, as power suppliers for wearable devices, is significantly behind the development of other stretchable electronics. Several stretchable lithium-ion batteries and primary batteries have been fabricated, but their low capacities and complicated manufacturing processes are obstacles for practical applications. Herein, we report a stretchable zinc/manganese-oxide (Zn-MnO2) full battery based on a silver-nanowire-coated sponge prepared via a facile dip-coating process. The spongy electrode, with a three-dimensional (3D) binary network structure, provided not only high conductivity and stretchability, but also enabled a high mass loading of electrochemically active materials (Zn and MnO2 particles). The fabricated Zn-MnO2 battery exhibited an areal capacity as high as 3.6 mAh·cm−2 and could accommodate tensile strains of up to 100% while retaining 89% of its original capacity. The facile solution-based strategy of dip-coating active materials onto a cheap sponge-based stretchable current collector opens up a new avenue for fabricating stretchable batteries.


stretchable battery Zn-MnO2 battery silver nanowires sponge binary network structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge the funding support from the National Natural Science Foundation of China (Nos. 21431006 and 21761132008), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 21521001), Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSWSLH036), the National Basic Research Program of China (No. 2014CB931800), and the Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS (No. 2015HSC-UE007).

Supplementary material

12274_2017_1771_MOESM1_ESM.pdf (1.2 mb)
Dip-coating processed sponge-based electrodes for stretchable Zn-MnO2 batteries
12274_2017_1771_MOESM2_ESM.avi (6.6 mb)
Supplementary material, approximately 6.63 MB.


  1. [1]
    Pan, S. W.; Yang, Z. B.; Chen, P. N.; Deng, J.; Li, H. P.; Peng, H. S. Wearable solar cells by stacking textile electrodes. Angew. Chem., Int. Ed. 2014, 126, 6224–6228.CrossRefGoogle Scholar
  2. [2]
    Song, Y. M.; Xie, Y. Z.; Malyarchuk, V.; Xiao, J. L.; Jung, I.; Choi, K.-J.; Liu, Z. J.; Park, H.; Lu, C. F.; Kim, R.-H. et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013, 497, 95–99.CrossRefGoogle Scholar
  3. [3]
    Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.CrossRefGoogle Scholar
  4. [4]
    Kim, D.-H.; Lu, N. S.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.CrossRefGoogle Scholar
  5. [5]
    Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.CrossRefGoogle Scholar
  6. [6]
    Melzer, M.; Kaltenbrunner, M.; Makarov, D.; Karnaushenko, D.; Karnaushenko, D.; Sekitani, T.; Someya, T.; Schmidt, O. G. Imperceptible magnetoelectronics. Nat. Commun. 2015, 6, 6080.CrossRefGoogle Scholar
  7. [7]
    Yao, S. S.; Zhu, Y. Nanomaterial-enabled stretchable conductors: strategies, materials and devices. Adv. Mater. 2015, 27, 1480–1511.CrossRefGoogle Scholar
  8. [8]
    Bandodkar, A. J.; Nunez-Flores, R.; Jia, W.; Wang, J. All-printed stretchable electrochemical devices. Adv. Mater. 2015, 27, 3060–3065.CrossRefGoogle Scholar
  9. [9]
    Xie, K. Y.; Wei, B. Q. Materials and structures for stretchable energy storage and conversion devices. Adv. Mater. 2014, 26, 3592–3617.CrossRefGoogle Scholar
  10. [10]
    Yu, C. J.; Masarapu, C.; Rong, J. P.; Wei, B. Q.; Jiang, H. Q. Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms. Adv. Mater. 2009, 21, 4793–4797.CrossRefGoogle Scholar
  11. [11]
    Hyun, D. C.; Park, M.; Park, C.; Kim, B.; Xia, Y. N.; Hur, J. H.; Kim, J. M.; Park, J. J.; Jeong, U. Ordered zigzag stripes of polymer gel/metal nanoparticle composites for highly stretchable conductive electrodes. Adv. Mater. 2011, 23, 2946–2950.CrossRefGoogle Scholar
  12. [12]
    Gray, D. S.; Tien, J.; Chen, C. S. High-conductivity elastomeric electronics. Adv. Mater. 2004, 16, 393–397.CrossRefGoogle Scholar
  13. [13]
    Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y. W.; Su, J.; Zhang, H. G. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.CrossRefGoogle Scholar
  14. [14]
    Song, Z. M.; Ma, T.; Tang, R.; Cheng, Q.; Wang, X.; Krishnaraju, D.; Panat, R.; Chan, C. K.; Yu, H. Y.; Jiang, H. Q. Origami lithium-ion batteries. Nat. Commun. 2014, 5, 3140.CrossRefGoogle Scholar
  15. [15]
    Kwon, Y. H.; Woo, S.-W.; Jung, H.-R.; Yu, H. K.; Kim, K.; Oh, B. H.; Ahn, S.; Lee, S.-Y.; Song, S.-W.; Cho, J. et al. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater. 2012, 24, 5192–5197.CrossRefGoogle Scholar
  16. [16]
    Yan, C. Y.; Wang, X.; Cui, M. Q.; Wang, J. Q.; Kang, W. X.; Foo, C. Y.; Lee, P. S. Stretchable silver-zinc batteries based on embedded nanowire elastic conductors. Adv. Energy. Mater. 2014, 4, 1301396.CrossRefGoogle Scholar
  17. [17]
    Park, J.; Wang, S. D.; Li, M.; Ahn, C.; Hyun, J. K.; Kim, D. S.; Kim do, K.; Rogers, J. A.; Huang, Y. G.; Jeon, S. Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nat. Commun. 2012, 3, 916.CrossRefGoogle Scholar
  18. [18]
    Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T. A rubberlike stretchable active matrix using elastic conductors. Science 2008, 321, 1468–1472.CrossRefGoogle Scholar
  19. [19]
    Sun, Y. M.; Lopez, J.; Lee, H.-W.; Liu, N.; Zheng, G. Y.; Wu, C.-L.; Sun, J.; Liu, W.; Chung, J. W.; Bao, Z. et al. A stretchable graphitic carbon/Si anode enabled by conformal coating of a self-healing elastic polymer. Adv. Mater. 2016, 28, 2455–2461.CrossRefGoogle Scholar
  20. [20]
    Lee, S.; Shin, S.; Lee, S.; Seo, J.; Lee, J.; Son, S.; Cho, H. J.; Algadi, H.; Al-Sayari, S.; Kim, D. E. et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 2015, 25, 3114–3121.CrossRefGoogle Scholar
  21. [21]
    Kim, Y.; Zhu, J.; Yeom, B.; Di Prima, M.; Su, X. L.; Kim, J.-G.; Yoo, S. J.; Uher, C.; Kotov, N. A. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013, 500, 59–63.CrossRefGoogle Scholar
  22. [22]
    Chen, X. L.; Lin, H. J.; Deng, J.; Zhang, Y.; Sun, X. M.; Chen, P. N.; Fang, X.; Zhang, Z. T.; Guan, G. Z.; Peng, H. S. Electrochromic fiber-shaped supercapacitors. Adv. Mater. 2014, 26, 8126–8132.CrossRefGoogle Scholar
  23. [23]
    Yang, Z. B.; Deng, J.; Chen, X. L.; Ren, J.; Peng, H. S. A highly stretchable, fiber-shaped supercapacitor. Angew. Chem., Int. Ed. 2013, 52, 13453–13457.CrossRefGoogle Scholar
  24. [24]
    Ren, J.; Zhang, Y.; Bai, W. Y.; Chen, X. L.; Zhang, Z. T.; Fang, X.; Weng, W.; Wang, Y. G.; Peng, H. S. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew. Chem., Int. Ed. 2014, 126, 7998–8003.CrossRefGoogle Scholar
  25. [25]
    Park, M.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S.; Shim, M. B.; Jeon, S.; Chung, D. Y. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 2012, 7, 803–809.CrossRefGoogle Scholar
  26. [26]
    Chun, K.-Y.; Oh, Y.; Rho, J.; Ahn, J.-H.; Kim, Y.-J.; Choi, H. R.; Baik, S. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 2010, 5, 853–857.CrossRefGoogle Scholar
  27. [27]
    Lang, X. Y.; Hirata, A.; Fujita, T.; Chen, M. W. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 2011, 6, 232–236.CrossRefGoogle Scholar
  28. [28]
    Gaikwad, A. M.; Zamarayeva, A. M.; Rousseau, J.; Chu, H.; Derin, I.; Steingart, D. A. Highly stretchable alkaline batteries based on an embedded conductive fabric. Adv. Mater. 2012, 24, 5071–5076.CrossRefGoogle Scholar
  29. [29]
    Kettlgruber, G.; Kaltenbrunner, M.; Siket, C. M.; Moser, R.; Graz, I. M.; Schwödiauer, R.; Bauer, S. Intrinsically stretchable and rechargeable batteries for self-powered stretchable electronics. J. Mater. Chem. A 2013, 1, 5505–5508.CrossRefGoogle Scholar
  30. [30]
    Ge, J.; Yao, H.-B.; Wang, X.; Ye, Y.-D.; Wang, J.-L.; Wu, Z.-Y.; Liu, J.-W.; Fan, F.-J.; Gao, H.-L.; Zhang, C.-L. et al. Stretchable conductors based on silver nanowires: Improved performance through a binary network design. Angew. Chem., Int. Ed. 2013, 52, 1654–1659.CrossRefGoogle Scholar
  31. [31]
    Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.CrossRefGoogle Scholar
  32. [32]
    Lee, J.-Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solutionprocessed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.CrossRefGoogle Scholar
  33. [33]
    Chen, M. T.; Zhang, L.; Duan, S. S.; Jing, S. L.; Jiang, H.; Li, C. Z. Highly stretchable conductors integrated with a conductive carbon nanotube/graphene network and 3D porous poly(dimethylsiloxane). Adv. Funct. Mater. 2014, 24, 7548–7556.CrossRefGoogle Scholar
  34. [34]
    Friis, E. A.; Lakes, R. S.; Park, J. B. Negative Poisson’s ratio polymeric and metallic foams. J. Mater. Sci. 1988, 23, 4406–4414.CrossRefGoogle Scholar
  35. [35]
    Gaikwad, A. M.; Whiting, G. L.; Steingart, D. A.; Arias, A. C. Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv. Mater. 2011, 23, 3251–3255.CrossRefGoogle Scholar
  36. [36]
    Kaltenbrunner, M.; Kettlgruber, G.; Siket, C.; Schwödiauer, R.; Bauer, S. Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics. Adv. Mater. 2010, 22, 2065–2067.CrossRefGoogle Scholar
  37. [37]
    Gaikwad, A. M.; Steingart, D. A.; Nga Ng, T.; Schwartz, D. E.; Whiting, G. L. A flexible high potential printed battery for powering printed electronics. Appl. Phys. Lett. 2013, 102, 233302.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Hong-Wu Zhu
    • 1
  • Jin Ge
    • 1
  • Yu-Can Peng
    • 1
  • Hao-Yu Zhao
    • 1
  • Lu-An Shi
    • 1
  • Shu-Hong Yu
    • 1
    Email author
  1. 1.Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Centre for Excellence in Nanoscience, Hefei Science Centre of CASUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations