Nano Research

, Volume 11, Issue 3, pp 1520–1529 | Cite as

Wafer-level and highly controllable fabricated silicon nanowire transistor arrays on (111) silicon-on-insulator (SOI) wafers for highly sensitive detection in liquid and gaseous environments

  • Xun Yang
  • Anran Gao
  • Yuelin Wang
  • Tie LiEmail author
Research Article


This paper presents a wafer-level and highly controllable fabrication technology for silicon nanowire field-effect transistor (SiNW-FET arrays) on (111) silicon-on-insulator (SOI) wafers. Herein, 3,000 SiNW FET array devices were designed and fabricated on 4-inch wafers with a rate of fine variety of more than 90% and a dimension deviation of the SiNWs of less than ± 20 nm in each array. As such, wafer-level and highly controllable fabricated SiNW FET arrays were realized. These arrays showed excellent electrical properties and highly sensitive determination of pH values and nitrogen dioxide. The high-performance of the SiNW FET array devices in liquid and gaseous environments can enable the detection under a wide range of conditions. This fabrication technology can lay the foundation for the large-scale application of SiNWs.


silicon nanowire array top-down wafer-level high-controllable high-performance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We appreciate financial support from the National Key Research and Development Program of China (No. 2017YFA0207103), Project of National Natural Science Foundation of China (Nos. 91323304, 81402468, 61327811, and 91623106), Shanghai Youth Science and Technology Talent Sailing project (No. 14YF1407200), Project for Shanghai Outstanding Academic leaders (No. 15XD1504300) and Youth Innovation Promotion Association, CAS.

Supplementary material

12274_2017_1768_MOESM1_ESM.pdf (1.1 mb)
Wafer-level and highly controllable fabricated silicon nanowire transistor arrays on (111) silicon-on-insulator (SOI) wafers for highly sensitive detection in liquid and gaseous environments


  1. [1]
    Henning, A.; Swaminathan, N.; Godkin, A.; Shalev, G.; Amit, I.; Rosenwaks, Y. Tunable diameter electrostatically formed nanowire for high sensitivity gas sensing. Nano Res. 2015, 8, 2206–2215.CrossRefGoogle Scholar
  2. [2]
    Hu, J. T.; Ouyang, M.; Yang, P. D.; Lieber, C. M. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 1999, 399, 48–51.CrossRefGoogle Scholar
  3. [3]
    Nozaki, D.; Kunstmann, J.; Zörgiebel, F.; Pregl, S.; Baraban, L.; Weber, W. M.; Mikolajick, T.; Cuniberti, G. Ionic effects on the transport characteristics of nanowire-based FETs in a liquid environment. Nano Res. 2014, 7, 380–389.CrossRefGoogle Scholar
  4. [4]
    Yang, C.; Zhong, Z. H.; Lieber, C. M. Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 2005, 310, 1304–1307.CrossRefGoogle Scholar
  5. [5]
    Patolsky, F.; Zheng, G. F.; Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 2006, 1, 1711–1724.CrossRefGoogle Scholar
  6. [6]
    Singh, A. K.; Ko, D. H.; Vishwakarma, N. K.; Jang, S.; Min, K. I.; Kim, D. P. Micro-total envelope system with silicon nanowire separator for safe carcinogenic chemistry. Nat. Commun. 2016, 7, 10741.CrossRefGoogle Scholar
  7. [7]
    Duan, X. X.; Li, Y.; Rajan, N. K.; Routenberg, D. A.; Modis, Y.; Reed, M. A. Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nat. Nanotechnol. 2012, 7, 401–407.CrossRefGoogle Scholar
  8. [8]
    Luthcke, S. B.; Arendt, A. A.; Rowlands, D. D.; McCarthy, J. J.; Larsen, C. F. Recent glacier mass changes in the gulf of Alaska region from GRACE mascon solutions. J. Glaciol. 2008, 54, 767–777.CrossRefGoogle Scholar
  9. [9]
    Hu, S.; Leu, P. W.; Marshall, A. F.; McIntyre, P. C. Singlecrystal germanium layers grown on silicon by nanowire seeding. Nat. Nanotechnol. 2009, 4, 649–653.CrossRefGoogle Scholar
  10. [10]
    Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.CrossRefGoogle Scholar
  11. [11]
    Dávila, D.; Tarancón, A.; Fernández-Rregúlez, M.; Calaza, C.; Salleras, M.; San Paulo, A.; Fonseca, L.; Silicon nanowire arrays as thermoelectric material for a power microgenerator. J. Micromech. Microeng. 2011, 21, 104007.CrossRefGoogle Scholar
  12. [12]
    Peng, K. Q.; Xu, Y.; Wu, Y.; Yan, Y. J.; Lee, S. T.; Zhu, J. Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 2005, 1, 1062–1067.CrossRefGoogle Scholar
  13. [13]
    Ma, D. D. D.; Lee, C. S.; Au, F. C. K.; Tong, S. Y.; Lee, S. T. Small-diameter silicon nanowire surfaces. Science 2003, 299, 1874–1877.CrossRefGoogle Scholar
  14. [14]
    Dhara, S.; Mele, E. J.; Agarwal, R. Voltage-tunable circular photogalvanic effect in silicon nanowires. Science 2015, 349, 726–729.CrossRefGoogle Scholar
  15. [15]
    Chung, S. W.; Yu, J. Y.; Heath, J. R. Silicon nanowire devices. Appl. Phys. Lett. 2000, 76, 2068–2070.CrossRefGoogle Scholar
  16. [16]
    Wang, J.; Polizzi, E.; Lundstrom, M. A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation. J. Appl. Phys. 2004, 96, 2192–2203.CrossRefGoogle Scholar
  17. [17]
    Park, I.; Li, Z. Y.; Pisano, A. P.; Williams, R. S. Top-down fabricated silicon nanowire sensors for real-time chemical detection. Nanotechnology 2010, 21 (1): 015501.CrossRefGoogle Scholar
  18. [18]
    Ruffo, R.; Hong, S. S.; Chan, C. K.; Huggins, R. A.; Cui, Y. Impedance analysis of silicon nanowire lithium ion battery anodes. J. Phys. Chem. C. 2009, 113, 11390–11398.CrossRefGoogle Scholar
  19. [19]
    Ahn, Y.; Dunning, J.; Park, J. Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. Nano Lett. 2005, 5, 1367–1370.CrossRefGoogle Scholar
  20. [20]
    Huang, R. G.; Tham, D.; Wang, D. W.; Heath, J. R. High performance ring oscillators from 10-nm wide silicon nanowire field-effect transistors. Nano Res. 2011, 4, 1005–1012.CrossRefGoogle Scholar
  21. [21]
    Liu, N.; Yao, Y.; Cha, J. J.; McDowell, M. T.; Han, Y.; Cui, Y. Functionalization of silicon nanowire surfaces with metalorganic frameworks. Nano Res. 2012, 5, 109–116.CrossRefGoogle Scholar
  22. [22]
    Bae, J. M.; Lee, W. J.; Ma, J. W.; Cho, M. H.; Ahn, J. P.; Lee, H. S. The oxidation characteristics of silicon nanowires grown with an Au catalyst. Nano Res. 2012, 5, 152–163.CrossRefGoogle Scholar
  23. [23]
    Park, N. M.; Choi, C. J. Growth of silicon nanowires in aqueous solution under atmospheric pressure. Nano Res. 2014, 7, 898–902.CrossRefGoogle Scholar
  24. [24]
    Zhang, L. M.; Liu, C.; Wong, A. B.; Resasco, J.; Yang, P. D. MoS2-wrapped silicon nanowires for photoelectrochemical water reduction. Nano Res. 2015, 8, 281–287.CrossRefGoogle Scholar
  25. [25]
    Yang, K. K.; Cantarero, A.; Rubio, A.; Agosta, R. D. Optimal thermoelectric figure of merit of Si/Ge core–shell nanowires. Nano Res. 2015, 8, 2611–2619.CrossRefGoogle Scholar
  26. [26]
    Zhong, X.; Wang, G. M.; Papandrea, B.; Li, M. F.; Xu, Y. X.; Chen, Y.; Chen, C. Y.; Zhou, H. L.; Xue, T.; Li, Y. J. et al. Reduced graphene oxide/silicon nanowire heterostructures with enhanced photoactivity and superior photoelectrochemical stability. Nano Res. 2015, 8, 2850–2858.CrossRefGoogle Scholar
  27. [27]
    Liu, Q.; Wu, F. L.; Cao, F. R.; Chen, L.; Xie, X. J.; Wang, W. C.; Tian, W.; Li, L. A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting. Nano Res. 2015, 8, 3524–3534.CrossRefGoogle Scholar
  28. [28]
    Kim, Y.; Jeon, Y.; Kim, M.; Kim, S. NOR logic function of a bendable combination of tunneling field-effect transistors with silicon nanowire channels. Nano Res. 2016, 9, 499–506.CrossRefGoogle Scholar
  29. [29]
    Gao, A. R.; Lu, N.; Wang, Y. C.; Dai, P. F.; Li, T.; Gao, X. L.; Wang, Y. L.; Fan, C. H. Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano Lett. 2012, 12, 5262–5268.CrossRefGoogle Scholar
  30. [30]
    Wang, C.; Ye, M.; Cheng, L.; Li, R.; Zhu, W. W.; Shi, Z.; Fan, C. H.; He, J. K.; Liu, J.; Liu, Z. Simultaneous isolation and detection of circulating tumor cells with a microfluidic silicon-nanowire-array integrated with magnetic upconversion nanoprobes. Biomaterials 2015, 54, 55–62.CrossRefGoogle Scholar
  31. [31]
    Wang, D. W.; Sheriff, B. A.; McAlpine, M.; Heath, J. R. Development of ultra-high density silicon nanowire arrays for electronics applications. Nano Res. 2008, 1, 9–21.CrossRefGoogle Scholar
  32. [32]
    Fan, R.; Wu, Y. Y.; Li, D. Y.; Yue, M.; Majumdar, A.; Yang, P. D. Fabrication of silica nanotube arrays from vertical silicon nanowire templates. J. Am. Chem. Soc. 2003, 125, 5254–5255.CrossRefGoogle Scholar
  33. [33]
    Huang, Z.; Fang, H.; Zhu, J. Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv. Mater. 2007, 19, 744–748.CrossRefGoogle Scholar
  34. [34]
    Engel, Y.; Elnathan, R.; Pevzner, A.; Davidi, G.; Flaxer, E.; Patolsky, F. Supersensitive detection of explosives by silicon nanowire arrays. Angew. Chem., Int. Ed. 2010, 49, 6830–6835.CrossRefGoogle Scholar
  35. [35]
    Peng, K. Q.; Zhang, M. L.; Lu, A. J.; Wong, N. B.; Zhang, R. Q.; Lee, S. T. Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching. Appl. Phys. Lett. 2007, 90, 163123.CrossRefGoogle Scholar
  36. [36]
    Zhang, X. Y.; Zhang, L. D.; Meng, G. W.; Li, G. H.; Jin-Phillipp, N. Y.; Phillipp, F. Synthesis of ordered single crystal silicon nanowire arrays. Adv. Mater. 2001, 13, 1238–1241.CrossRefGoogle Scholar
  37. [37]
    Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 2003, 3, 1255–1259.CrossRefGoogle Scholar
  38. [38]
    Chen, X. J.; Zhang, J.; Wang, Z. L.; Yan, Q.; Hui, S. C. Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification. Sensor Actuat. B: Chem. 2011, 156, 631–636.CrossRefGoogle Scholar
  39. [39]
    In, H. J.; Field, C. R.; Pehrsson, P. E. Periodically porous top electrodes on vertical nanowire arrays for highly sensitive gas detection. Nanotechnology 2011, 22, 355501.CrossRefGoogle Scholar
  40. [40]
    Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, B. Z. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889.CrossRefGoogle Scholar
  41. [41]
    Tsakalakos, L.; Balch, J.; Fronheiser, J.; Korevaar, B. A.; Sulima, O.; Rand, J. Silicon nanowire solar cells. Appl. Phys. Lett. 2007, 91, 233117.CrossRefGoogle Scholar
  42. [42]
    Peng, K. Q.; Wang, X.; Lee, S. T. Silicon nanowire array photoelectrochemical solar cells. Appl. Phys. Lett. 2008, 92, 163103.CrossRefGoogle Scholar
  43. [43]
    Thiyagu, S.; Devi, B. P.; Pei, Z. Fabrication of large area high density, ultra-low reflection silicon nanowire arrays for efficient solar cell applications. Nano Res. 2011, 4, 1136–1143.CrossRefGoogle Scholar
  44. [44]
    Garnett, E. C.; Yang, P. D. Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 2008, 130, 9224–9225.CrossRefGoogle Scholar
  45. [45]
    Shen, X. J.; Sun, B. Q.; Liu, D.; Lee, S. T. Hybrid heterojunction solar cell based on organicinorganic silicon nanowire array architecture. J. Am. Chem. Soc. 2011, 133, 19408–19415.CrossRefGoogle Scholar
  46. [46]
    Fang, H.; Li, X. D.; Song, S.; Xu, Y.; Zhu, J. Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology 2008, 19, 255703.CrossRefGoogle Scholar
  47. [47]
    Peng, K. Q.; Wang, X.; Wu, X. L.; Lee, S. T. Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion. Nano Lett. 2009, 9, 3704–3709.CrossRefGoogle Scholar
  48. [48]
    Garnett, E.; Yang, P. D. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087.CrossRefGoogle Scholar
  49. [49]
    Li, Z.; Chen, Y.; Li, X.; Kamins, T. I.; Nauka, K.; Williams, R. S. Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett. 2004, 4, 245–247.CrossRefGoogle Scholar
  50. [50]
    Park, I.; Li, Z. Y.; Pisano, A. P.; Williams, R. S. Selective surface functionalization of silicon nanowires via nanoscale joule heating. Nano Lett. 2007, 7, 3106–3111.CrossRefGoogle Scholar
  51. [51]
    Lee, K. N.; Jung, S. W.; Shin, K. S.; Kim, W. H.; Lee, M. H.; Seong, W. K. Fabrication of suspended silicon nanowire arrays. Small 2008, 4, 642–648.CrossRefGoogle Scholar
  52. [52]
    Yu, X.; Wang, Y. C.; Zhou, H.; Liu, Y. X.; Wang, Y.; Li, T.; Wang, Y. L. Top-down fabricated silicon-nanowire-based field-effect transistor device on a (111) silicon wafer. Small 2013, 9, 525–530.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of Sciences (UCAS)BeijingChina

Personalised recommendations