Advertisement

Nano Research

, Volume 11, Issue 3, pp 1482–1489 | Cite as

Cobalt-based hydroxide nanoparticles @ N-doping carbonic frameworks core–shell structures as highly efficient bifunctional electrocatalysts for oxygen evolution and oxygen reduction reactions

  • Shiqiang Feng
  • Cheng Liu
  • Zhigang Chai
  • Qi LiEmail author
  • Dongsheng XuEmail author
Research Article

Abstract

The development of highly efficient and earth-abundant oxygen evolution/reduction reaction (OER/ORR) catalysts is essential for rechargeable metal–air batteries. Herein, cobalt-based hydroxide nanoparticles @ N-doping carbonic framework (CoOHCat@NCF) core–shell structures have been designed as highly stable and efficient OER/ORR bifunctional catalysts. The obtained composite shows enhanced catalytic activities and excellent stability in alkaline media. In the OER, a high turnover frequency (2.03 s–1 at an overpotential of 0.36 V), low overpotential at high current density (100 mA·cm–2 requiring an overpotential of 0.38 V), and excellent stability (100 mA·cm–2 for one week with no activity loss) have been achieved. Furthermore, although cobalt species-based catalysts are known as good ORR catalysts, their hybridization with NCF obtained from metal organic frameworks successfully enhanced their ORR activities. The efficient activity of CoOHCat@NCF as a bifunctional oxygen electrocatalyst can be ascribed to the core–shell structures stabilizing the active catalytic sites and the porous shell structure favoring electrocatalysis-related mass transport.

Keywords

core–shell structure cobalt-based hydroxide nanoparticles @ N-doping carbonic framework (CoOHCat@NCF) bifunctional electrocatalyst oxygen evolution reaction oxygen reduction reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge financial support from the National Basic Research Program of China (Nos. 2013CB932601 and 2014CB239303) and the National Natural Science Foundation of China (No. 21133001).

Supplementary material

12274_2017_1765_MOESM1_ESM.pdf (3.1 mb)
Cobalt-based hydroxide nanoparticles @ N-doping carbonic frameworks core–shell structures as highly efficient bifunctional electrocatalysts for oxygen evolution and oxygen reduction reactions
12274_2017_1765_MOESM2_ESM.avi (2.8 mb)
Supplementary material, approximately 2.82 MB.
12274_2017_1765_MOESM3_ESM.avi (3.3 mb)
Supplementary material, approximately 3.33 MB.

References

  1. [1]
    Bidault, F.; Brett, D. J. L.; Middleton, P. H.; Brandon, N. P. Review of gas diffusion cathodes for alkaline fuel cells. J. Power Sources 2009, 187, 39–48.CrossRefGoogle Scholar
  2. [2]
    Cheng, F. Y.; Chen, J. Metal–air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172–2192.CrossRefGoogle Scholar
  3. [3]
    Lee, J. S.; Kim, S. T.; Cao, R. G.; Choi, N. S.; Liu, M. L.; Lee, K. T.; Cho, J. Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater. 2011, 1, 34–50.CrossRefGoogle Scholar
  4. [4]
    Lu, Y. C.; Kwabi, D. G.; Yao, K. P. C.; Harding, J. R.; Zhou, J. G.; Zuin, L.; Shao-Horn, Y. The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ. Sci. 2011, 4, 2999–3007.CrossRefGoogle Scholar
  5. [5]
    Lee, J. S.; Park, G. S.; Lee, H. I.; Kim, S. T.; Cao, R. G.; Liu, M. L.; Cho, J. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions. Nano Lett. 2011, 11, 5362–5366.CrossRefGoogle Scholar
  6. [6]
    Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.CrossRefGoogle Scholar
  7. [7]
    Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660–12668.CrossRefGoogle Scholar
  8. [8]
    Sun, J. Q.; Yin, H. J.; Liu, P. R.; Wang, Y.; Yao, X. D.; Tang, Z. Y.; Zhao, H. J. Molecular engineering of Ni-/Coporphyrin multilayers on reduced graphene oxide sheets as bifunctional catalysts for oxygen evolution and oxygen reduction reactions. Chem. Sci. 2016, 7, 5640–5646.CrossRefGoogle Scholar
  9. [9]
    Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Tang, Z. Y. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.CrossRefGoogle Scholar
  10. [10]
    Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Yang, S. H. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.CrossRefGoogle Scholar
  11. [11]
    Spendelow, J. S.; Wieckowski, A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys. Chem. Chem. Phys. 2007, 9, 2654–2675.CrossRefGoogle Scholar
  12. [12]
    Cui, X. J.; Ren, P. J.; Deng, D. H.; Deng, J.; Bao, X. H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123–129.CrossRefGoogle Scholar
  13. [13]
    Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Yang, S. H. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.CrossRefGoogle Scholar
  14. [14]
    Wang, Z. L.; Xiao, S.; Zhu, Z.; Long, X. L.; Zheng, X. L.; Lu, X. H.; Yang, S. H. Cobalt-embedded nitrogen doped carbon nanotubes: A bifunctional catalyst for oxygen electrode reactions in a wide pH range. ACS Appl. Mater. Interfaces 2015, 7, 4048–4055.CrossRefGoogle Scholar
  15. [15]
    Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.CrossRefGoogle Scholar
  16. [16]
    Masa, J.; Xia, W.; Sinev, I.; Zhao, A. Q.; Sun, Z. Y.; Grützke, S.; Weide, P.; Muhler, M.; Schuhmann, W. MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. Angew. Chem., Int. Ed. 2014, 53, 8508–8512.CrossRefGoogle Scholar
  17. [17]
    Liu, X. E.; Park, M.; Kim, M. G.; Gupta, S.; Wu, G.; Cho, J. Integrating NiCo alloys with their oxides as efficient bifunctional cathode catalysts for rechargeable zinc–air batteries. Angew. Chem., Int. Ed. 2015, 54, 9654–9658.CrossRefGoogle Scholar
  18. [18]
    Zhang, T. T.; He, C. S.; Sun, F. Z.; Ding, Y. Q.; Wang, M. C.; Peng, L.; Wang, J. H.; Lin, Y. Q. Co3O4 nanoparticles anchored on nitrogen-doped reduced graphene oxide as a multifunctional catalyst for H2O2 reduction, oxygen reduction and evolution reaction. Sci. Rep. 2017, 7, 43638.CrossRefGoogle Scholar
  19. [19]
    Kim, J. E.; Lim, J.; Lee, G. Y.; Choi, S. H.; Maiti, U. N.; Lee, W. J.; Lee, H. J.; Kim, S. O. Subnanometer cobalthydroxide- anchored N-doped carbon nanotube forest for bifunctional oxygen catalyst. ACS Appl. Mater. Interfaces 2016, 8, 1571–1577.CrossRefGoogle Scholar
  20. [20]
    Ishikawa, T.; Matijević, E. Preparation and properties of uniform colloidal metal phosphates III. Cobalt(II) Phosphate. J. Colloid Interface Sci. 1988, 123, 122–128.CrossRefGoogle Scholar
  21. [21]
    Springsteen, L. L.; Matijevic, E. Preparation and properties of uniform colloidal metal phosphates IV. Cadmium-, nickel-, and manganese(II)-phosphate. Colloid Polym. Sci. 1989, 267, 1007–1015.CrossRefGoogle Scholar
  22. [22]
    Zhao, M. T.; Deng, K.; He, L. C.; Liu, Y.; Li, G. D.; Zhao, H. J.; Tang, Z. Y. Core–shell palladium nanoparticle@metal–organic frameworks as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc. 2014, 136, 1738–1741.CrossRefGoogle Scholar
  23. [23]
    He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core–shell noble-metal@metal-organicframework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 52, 3741–3745.CrossRefGoogle Scholar
  24. [24]
    Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.CrossRefGoogle Scholar
  25. [25]
    Liu, X. E.; Liu, W.; Ko, M.; Park, M.; Kim, M. G.; Oh, P.; Chae, S.; Park, S.; Casimir, A.; Wu, G. et al. Metal (Ni, Co)–metal oxides/graphene nanocomposites as multifunctional electrocatalysts. Adv. Funct. Mater. 2015, 25, 5799–5808.CrossRefGoogle Scholar
  26. [26]
    Ke, F.; Qiu, L. G.; Yuan, Y. P.; Jiang, X.; Zhu, J. F. Fe3O4@MOF core–shell magnetic microspheres with a designable metal–organic framework shell. J. Mater. Chem. 2012, 22, 9497–9500.CrossRefGoogle Scholar
  27. [27]
    Bennett, T. D.; Cheetham, A. K. Amorphous metal–organic frameworks. Acc. Chem. Res. 2014, 47, 1555–1562.CrossRefGoogle Scholar
  28. [28]
    Lee, H. J.; We, J.; Kim, J. O.; Kim, D.; Cha, W.; Lee, E.; Sohn, J.; Oh, M. Morphological and structural evolutions of metal–organic framework particles from amorphous spheres to crystalline hexagonal rods. Angew. Chem., Int. Ed. 2015, 54, 10564–10568.CrossRefGoogle Scholar
  29. [29]
    Jin, H.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.CrossRefGoogle Scholar
  30. [30]
    Li, L. L.; Tian, T.; Jiang, J.; Ai, L. H. Hierarchically porous Co3O4 architectures with honeycomb-like structures for efficient oxygen generation from electrochemical water splitting. J. Power Sources 2015, 294, 103–111.CrossRefGoogle Scholar
  31. [31]
    Wu, J.; Ren, Z. Y.; Du, S. C.; Kong, L. J.; Liu, B. W.; Xi, W.; Zhu, J. Q.; Fu, H. G. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res. 2016, 9, 713–725.CrossRefGoogle Scholar
  32. [32]
    Zhang, T. T.; Cui, S. W.; Yu, B.; Liu, Z. L.; Wang, D. A. Surface engineering for an enhanced photoelectrochemical response of TiO2 nanotube arrays by simple surface air plasma treatment. Chem. Commun. 2015, 51, 16940–16943.CrossRefGoogle Scholar
  33. [33]
    McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.CrossRefGoogle Scholar
  34. [34]
    Wang, J.; Li, K.; Zhong, H. X.; Xu, D.; Wang, Z. L.; Jiang, Z.; Wu, Z. J.; Zhang, X. B. Synergistic effect between metal–nitrogen–carbon sheets and NiO nanoparticles for enhanced electrochemical water-oxidation performance. Angew. Chem., Int. Ed. 2015, 54, 10530–10534.CrossRefGoogle Scholar
  35. [35]
    Pintado, S.; Goberna-Ferrón, S.; Escudero-Adán, E. C.; Galán-Mascarós, J. R. Fast and persistent electrocatalytic water oxidation by Co–Fe prussian blue coordination polymers. J. Am. Chem. Soc. 2013, 135, 13270–13273.CrossRefGoogle Scholar
  36. [36]
    Sayeed, M. A.; Herd, T.; O’Mullane, A. P. Direct electrochemical formation of nanostructured amorphous Co(OH)2 on gold electrodes with enhanced activity for the oxygen evolution reaction. J. Mater. Chem. A 2016, 4, 991–999.CrossRefGoogle Scholar
  37. [37]
    Will, F. G. Electrochemical oxidation of hydrogen on partially immersed platinum electrodes I. Experiments and interpretation. J. Electrochem. Soc. 1963, 110, 145–151.CrossRefGoogle Scholar
  38. [38]
    Kanan, M. W.; Nocera, D. G. In situ formation of an oxygenevolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.CrossRefGoogle Scholar
  39. [39]
    Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt–phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509.CrossRefGoogle Scholar
  40. [40]
    González-Flores, D.; Sánchez, I.; Zaharieva, I.; Klingan, K.; Heidkamp, J.; Chernev, P.; Menezes, P. W.; Driess, M.; Dau, H.; Montero, M. L. Heterogeneous water oxidation: Surface activity versus amorphization activation in cobalt phosphate catalysts. Angew. Chem., Int. Ed. 2015, 54, 2472–2476.CrossRefGoogle Scholar
  41. [41]
    Kanan, M. W.; Yano, J.; Surendranath, Y.; Dincă, M.; Yachandra, V. K.; Nocera, D. G. Structure and valency of a cobalt–phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 2010, 132, 13692–13701.CrossRefGoogle Scholar
  42. [42]
    Irebo, T.; Reece, S. Y.; Sjödin, M.; Nocera, D. G.; Hammarström, L. Proton-coupled electron transfer of tyrosine oxidation: Buffer dependence and parallel mechanisms. J. Am. Chem. Soc. 2007, 129, 15462–15464.CrossRefGoogle Scholar
  43. [43]
    Nocera, D. G. The artificial leaf. Acc. Chem. Res. 2012, 45, 767–776.CrossRefGoogle Scholar
  44. [44]
    Mattioli, G.; Giannozzi, P.; Amore Bonapasta, A.; Guidoni, L. Reaction pathways for oxygen evolution promoted by cobalt catalyst. J. Am. Chem. Soc. 2013, 135, 15353–15363.CrossRefGoogle Scholar
  45. [45]
    Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.CrossRefGoogle Scholar
  46. [46]
    Lai, Q. X.; Zheng, L. R.; Liang, Y. Y.; He, J. P.; Zhao, J. X.; Chen, J. H. Metal–organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx sites for advanced oxygen reduction in acid media. ACS Catal. 2017, 7, 1655–1663.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations