Advertisement

Nano Research

, Volume 11, Issue 3, pp 1447–1455 | Cite as

Colloidal CsPbBr3 perovskite nanocrystal films as electrochemiluminescence emitters in aqueous solutions

  • Zhixiong Cai
  • Feiming Li
  • Wei Xu
  • Shujun Xia
  • Jingbin Zeng
  • Shaogui He
  • Xi ChenEmail author
Research Article

Abstract

Perovskite nanocrystals (NCs), which have emerged as a new class of phosphors with superb luminescence properties and bandgaps that can be easily tuned using chemical methods, have generated tremendous interest for a wide variety of applications where colloidal quantum dots have been very successful as carrier sources. In this study, self-assembled films of CsPbBr3 NCs were produced via drop casting of colloidal NCs onto glassy carbon electrodes (GCEs) to form an NC film-modified electrode. The possible fabrication process of the CsPbBr3 NCs films was discussed. We further studied the anodic electrochemiluminescence (ECL) behavior of the perovskite CsPbBr3 NCs film using cyclic voltammetry with tripropylamine (TPA) as a coreactant, and a possible ECL mechanism was proposed. Briefly, TPA was oxidized to produce strongly reducing radical species, which can react with electrochemically oxidized CsPbBr3 NCs to generate excited CsPbBr3 NCs* capable of light emission. The relative stability of the ECL emission of the CsPbBr3 NC films under aqueous conditions was also investigated, and it was found that they showed operational stability over the first three hours, indicating suitable reliability for application as sensing materials. The results suggested that semiconducting perovskite NCs have great potential for application in the ECL field.

Keywords

electrochemiluminescence perovskite CsPbBr3 colloidal nanocrystals film aqueous solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 21675133), the Marine high-tech industry development projects of Fujian Province (No. 2015-19). We thank Professor John Hodgkiss of the City University of Hong Kong for polishing the English.

Supplementary material

12274_2017_1760_MOESM1_ESM.pdf (926 kb)
Colloidal CsPbBr3 perovskite nanocrystal films as electrochemiluminescence emitters in aqueous solutions

References

  1. [1]
    Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science 2012, 338, 643–647.CrossRefGoogle Scholar
  2. [2]
    Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.CrossRefGoogle Scholar
  3. [3]
    Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angew. Chem., Int. Ed. 2015, 127, 15644–15648.CrossRefGoogle Scholar
  4. [4]
    Misra, R. K.; Aharon, S.; Li, B. L.; Mogilyansky, D.; Visoly-Fisher, I.; Etgar, L.; Katz, E. A. Temperature- and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight. J. Phys. Chem. Lett. 2015, 6, 326–330.CrossRefGoogle Scholar
  5. [5]
    Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769.CrossRefGoogle Scholar
  6. [6]
    Palazon, F.; Akkerman, Q. A.; Prato, M.; Manna, L. X-ray lithography on perovskite nanocrystals films: From patterning with anion-exchange reactions to enhanced stability in air and water. ACS Nano 2016, 10, 1224–1230.CrossRefGoogle Scholar
  7. [7]
    Bertoni, C.; Gallardo, D.; Dunn, S.; Gaponik, N.; Eychmüller, A. Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals. Appl. Phys. Lett. 2007, 90, 034107.CrossRefGoogle Scholar
  8. [8]
    Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180–183.CrossRefGoogle Scholar
  9. [9]
    Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310, 462–465.CrossRefGoogle Scholar
  10. [10]
    Huang, Y.; Fang, M. X.; Zou, G. Z.; Zhang, B.; Wang, H. S. Monochromatic and electrochemically switchable electrochemiluminescence of perovskite CsPbBr3 nanocrystals. Nanoscale 2016, 8, 18734–18739.CrossRefGoogle Scholar
  11. [11]
    Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mínguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 2014, 136, 850–853.CrossRefGoogle Scholar
  12. [12]
    Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.CrossRefGoogle Scholar
  13. [13]
    Sukla, N.; Liu, C.; Jones, P. M.; Weller, D. FTIR study of surfactant bonding to FePt nanoparticles. J. Magn. Magn. Mater. 2003, 266, 178–184.CrossRefGoogle Scholar
  14. [14]
    Suslick, K. S.; Fang, M. M.; Hyeon, T. Sonochemical synthesis of iron colloids. J. Am. Chem. Soc. 1996, 118, 11960–11961.CrossRefGoogle Scholar
  15. [15]
    Zhang, L. H.; Dong, S. J. Electrogenerated chemiluminescence sensors using Ru(bpy)3 2+ doped in silica nanoparticles. Anal. Chem. 2006, 78, 5119–5123.CrossRefGoogle Scholar
  16. [16]
    Sun, X.; Du, Y.; Dong, S.; Wang, E. Method for effective immobilization of Ru(bpy)3 2+ on an electrode surface for solid-state electrochemiluminescene detection. Anal. Chem. 2005, 77, 8166–8169.CrossRefGoogle Scholar
  17. [17]
    Ding, Z. F,; Quinn, B. M.; Haram, S. K.; Pell, L. E.; Korgel, B. A.; Bard, A. J. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 2002, 296, 1293–1297.CrossRefGoogle Scholar
  18. [18]
    Sun, L. F.; Bao, L.; Hyun, B.-R.; Bartnik, A. C.; Zhong, Y.-W.; Reed, J. C.; Pang, D.-W.; Abruña, H. D.; Malliaras, G. G.; Wise, F. W. Electrogenerated chemiluminescence from PbS quantum dots. Nano Lett. 2009, 9, 789–793.CrossRefGoogle Scholar
  19. [19]
    Zhang, L. H.; Zou, X. Q.; Ying, E. B.; Dong, S. J. Quantum dot electrochemiluminescence in aqueous solution at lower potential and its sensing application. J. Phys. Chem. C 2008, 112, 4451–4454.CrossRefGoogle Scholar
  20. [20]
    Knight, A. W.; Greenway, G. M. Relationship between structural attributes and observed electrogenerated chemiluminescence (ECL) activity of tertiary amines as potential analytes for the tris(2,2-bipyridine)ruthenium(II) ECL reaction. A review. Analyst 1996, 121, 101R–106R.CrossRefGoogle Scholar
  21. [21]
    Liu, X. Q.; Shi, L. H.; Niu, W. X.; Li, H. J.; Xu, G. B. Environmentally friendly and highly sensitive ruthenium(II) tris(2,2′-bipyridyl) electrochemiluminescent system using 2-(dibutylamino)ethanol as co-reactant. Angew. Chem., Int. Ed. 2007, 119, 425–428.CrossRefGoogle Scholar
  22. [22]
    Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X. H.; Debnath, R.; Cha, D. et al. Colloidal-quantum-dot photovoltaics using atomicligand passivation. Nat. Mater. 2011, 10, 765–771.CrossRefGoogle Scholar
  23. [23]
    Li, J. H.; Xu, L. M.; Wang, T.; Song, J. Z.; Chen, J. W.; Xue, J.; Dong, Y. H.; Cai, B.; Shan, Q. S.; Han, B. N. et al. 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 2017, 29, 1603885.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Zhixiong Cai
    • 1
  • Feiming Li
    • 1
  • Wei Xu
    • 1
  • Shujun Xia
    • 1
  • Jingbin Zeng
    • 3
  • Shaogui He
    • 4
  • Xi Chen
    • 1
    • 2
    Email author
  1. 1.Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
  2. 2.State Key Laboratory of Marine Environmental ScienceXiamen UniversityXiamenChina
  3. 3.State Key Laboratory of Heavy Oil Processing & College of ScienceChina University of Petroleum (East China)QingdaoChina
  4. 4.Xiamen Huaxia UniversityXiamenChina

Personalised recommendations