Nano Research

, Volume 11, Issue 3, pp 1399–1414 | Cite as

Effects of dielectric stoichiometry on the photoluminescence properties of encapsulated WSe2 monolayers

  • Javier Martín-SánchezEmail author
  • Antonio Mariscal
  • Marta De Luca
  • Aitana Tarazaga Martín-Luengo
  • Georg Gramse
  • Alma Halilovic
  • Rosalía Serna
  • Alberta Bonanni
  • Ilaria Zardo
  • Rinaldo TrottaEmail author
  • Armando Rastelli
Research Article


Two-dimensional transition metal dichalcogenide semiconductors have emerged as promising candidates for optoelectronic devices with unprecedented properties and ultra-compact footprints. However, the high sensitivity of atomically thin materials to the surrounding dielectric media imposes severe limitations on their practical applicability. Hence, to enable the effective integration of these materials in devices, the development of reliable encapsulation procedures that preserve their physical properties is required. Here, the excitonic photoluminescence (at room temperature and 10 K) is assessed on mechanically exfoliated WSe2 monolayer flakes encapsulated with SiOx and AlxOy layers by means of chemical and physical deposition techniques. Conformal coating on untreated and non-functionalized flakes is successfully achieved by all the techniques examined, with the exception of atomic layer deposition, for which a cluster-like oxide coating is formed. No significant compositional or strain state changes in the flakes are detected upon encapsulation, independently of the technique adopted. Remarkably, our results show that the optical emission of the flakes is strongly influenced by the stoichiometry quality of the encapsulating oxide. When the encapsulation is carried out with slightly sub-stoichiometric oxides, two remarkable phenomena are observed. First, dominant trion (charged exciton) photoluminescence is detected at room temperature, revealing a clear electrical doping of the monolayers. Second, a strong decrease in the optical emission of the monolayers is observed, and attributed to non-radiative recombination processes and/or carrier transfer from the flake to the oxide. Power- and temperature-dependent photoluminescence measurements further confirm that stoichiometric oxides obtained by physical deposition lead to a successful encapsulation, opening a promising route for the development of integrated two-dimensional devices.


two dimensional (2D) materials dielectric encapsulation transition metal dichalcogenides semiconductors photoluminescence WSe2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank Georgios Katsaros and Tim Wehling for valuable discussions. Stephan Bräuer, Albin Schwarz, and Ursula Kainz are acknowledged for technical support. A. M. acknowledges the financial support through BES-2013-062593. G. G. acknowledges support from the Austrian Science Fund through project P 28018-B27. I. Z. acknowledges financial support from the Swiss National Science Foundation research grant (No. 200021_165784). This work was partially funded by the Austrian Science Fund through the projects P24471 and P26830, and by the Spanish Ministry for Economy and Competitiveness trough the project MINECO/FEDER TEC2015-69916-C2-1-R.

Supplementary material

12274_2017_1755_MOESM1_ESM.pdf (2.1 mb)
Effects of dielectric stoichiometry on the photoluminescence properties of encapsulated WSe2 monolayers


  1. [1]
    Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing highperformance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983–1990.CrossRefGoogle Scholar
  2. [2]
    Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.CrossRefGoogle Scholar
  3. [3]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.CrossRefGoogle Scholar
  4. [4]
    Kobolov, A. V.; Tominaga, J. Two-Dimensional Transition-Metal Dichalcogenides; Springer Series in Materials Science: Switzerland, 2016.Google Scholar
  5. [5]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.CrossRefGoogle Scholar
  6. [6]
    He, K. L.; Kumar, N.; Zhao, L.; Wang, Z. F.; Mak, K. F.; Zhao, H.; Shan, J. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 2014, 113, 026803.CrossRefGoogle Scholar
  7. [7]
    Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.CrossRefGoogle Scholar
  8. [8]
    Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638.CrossRefGoogle Scholar
  9. [9]
    Huang, J. N.; Hoang, T. B.; Mikkelsen, M. H. Probing the origin of excitonic states in monolayer WSe2. Sci. Rep. 2016, 6, 22414.CrossRefGoogle Scholar
  10. [10]
    You, Y. M.; Zhang, X. X.; Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R.; Heinz, T. F. Observation of biexcitons in monolayer WSe2. Nat. Phys. 2015, 11, 477–482.CrossRefGoogle Scholar
  11. [11]
    Arora, A.; Koperski, M.; Nogajewski, K.; Marcus, J.; Faugeras, C.; Potemski, M. Excitonic resonances in thin films of WSe2: From monolayer to bulk material. Nanoscale 2015, 7, 10421–10429.CrossRefGoogle Scholar
  12. [12]
    Choi, J.; Zhang, H. Y.; Du, H. D.; Choi, J. H. Understanding solvent effects on the properties of two-dimensional transition metal dichalcogenides. ACS Appl. Mater. Interfaces 2016, 8, 8864–8869.CrossRefGoogle Scholar
  13. [13]
    Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831–2836.CrossRefGoogle Scholar
  14. [14]
    Yu, Y. F.; Yu, Y. L.; Xu, C.; Cai, Y. Q.; Su, L. Q.; Zhang, Y.; Zhang, Y. W.; Gundogdu, K.; Cao, L. Y. Engineering substrate interactions for high luminescence efficiency of transitionmetal dichalcogenide monolayers. Adv. Funct. Mater. 2016, 26, 4733–4739.CrossRefGoogle Scholar
  15. [15]
    Buscema, M.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. The effect of the substrate on the raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571.CrossRefGoogle Scholar
  16. [16]
    Shi, H. Y.; Yan, R. S.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. B. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 2013, 7, 1072–1080.CrossRefGoogle Scholar
  17. [17]
    Mag-isa, A. E.; Kim, J. H.; Lee, H. J.; Oh, C. S. A systematic exfoliation technique for isolating large and pristine samples of 2D materials. 2D Mater. 2015, 2, 034017.CrossRefGoogle Scholar
  18. [18]
    Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.CrossRefGoogle Scholar
  19. [19]
    Yan, T. F.; Qiao, X. F.; Liu, X. N.; Tan, P. H.; Zhang, X. H. Photoluminescence properties and exciton dynamics in monolayer WSe2. Appl. Phys. Lett. 2014, 105, 101901.CrossRefGoogle Scholar
  20. [20]
    Chen, X. L.; Wu, Y. Y.; Wu, Z. F.; Han, Y.; Xu, S. G.; Wang, L.; Ye, W. G.; Han, T. Y.; He, Y. H.; Cai, Y. et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 2015, 6, 7315.CrossRefGoogle Scholar
  21. [21]
    Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K. S.; Cho, E.; Sangwan, V. K.; Liu, X. L.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014, 14, 6964–6970.CrossRefGoogle Scholar
  22. [22]
    Jena, D.; Konar, A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 2007, 98, 136805.CrossRefGoogle Scholar
  23. [23]
    Kufer, D.; Konstantatos, G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett. 2015, 15, 7307–7313.CrossRefGoogle Scholar
  24. [24]
    Park, J. H.; Fathipour, S.; Kwak, I.; Sardashti, K.; Ahles, C. F.; Wolf, S. F.; Edmonds, M.; Vishwanath, S.; Xing, H. G.; Fullerton-Shirey, S. K. et al. Atomic layer deposition of Al2O3 on WSe2 functionalized by titanyl phthalocyanine. ACS Nano 2016, 10, 6888–6896.CrossRefGoogle Scholar
  25. [25]
    Huber, M. A.; Mooshammer, F.; Plankl, M.; Viti, L.; Sandner, F.; Kastner, L. Z.; Frank, T.; Fabian, J.; Vitiello, M. S.; Cocker, T. L. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat Nanotechnol. 2016, 12, 207–211.CrossRefGoogle Scholar
  26. [26]
    Cheng, L. X.; Qin, X. Y.; Lucero, A. T.; Azcatl, A.; Huang, J.; Wallace, R. M.; Cho, K.; Kim, J. Atomic layer deposition of a high-k dielectric on MoS2 using trimethylaluminum and ozone. ACS Appl. Mater. Interfaces 2014, 6, 11834–11838.CrossRefGoogle Scholar
  27. [27]
    Azcatl, A.; Kc, S.; Peng, X.; Lu, N.; McDonnell, S.; Qin, X. Y.; de Dios, F.; Addou, R.; Kim, J.; Kim, M. J. et al. HfO2 on UV–O3 exposed transition metal dichalcogenides: Interfacial reactions Study. 2D Mater. 2015, 2, 014004.CrossRefGoogle Scholar
  28. [28]
    Yang, W.; Sun, Q. Q.; Geng, Y.; Chen, L.; Zhou, P.; Ding, S. J.; Zhang, D. W. The integration of sub-10 nm gate oxide on MoS2 with ultra low leakage and enhanced mobility. Sci. Rep. 2015, 5, 11921.CrossRefGoogle Scholar
  29. [29]
    Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.CrossRefGoogle Scholar
  30. [30]
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.CrossRefGoogle Scholar
  31. [31]
    Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6, 5635–5641.CrossRefGoogle Scholar
  32. [32]
    Chen, K.; Kiriya, D.; Hettick, M.; Tosun, M.; Ha, T. J.; Madhvapathy, S. R.; Desai, S.; Sachid, A.; Javey, A. Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density. APL Mater. 2014, 2, 092504.CrossRefGoogle Scholar
  33. [33]
    Sercombe, D.; Schwarz, S.; Del Pozo-Zamudio, O.; Liu, F.; Robinson, B. J.; Chekhovich, E. A.; Tartakovskii, I. I.; Kolosov, O.; Tartakovskii, A. I. Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates. Sci. Rep. 2013, 3, 3489.CrossRefGoogle Scholar
  34. [34]
    Plechinger, G.; Schrettenbrunner, F. X.; Eroms, J.; Weiss, D.; Schüller, C.; Korn, T. Low-temperature photoluminescence of oxide-covered single-layer MoS2. Phys. Status Solidi Rapid Res. Lett. 2012, 6, 126–128.CrossRefGoogle Scholar
  35. [35]
    Bhanu, U.; Islam, M. R.; Tetard, L.; Khondaker, S. I. Photoluminescence quenching in gold-MoS2 hybrid nanoflakes. Sci. Rep. 2014, 4, 5575.CrossRefGoogle Scholar
  36. [36]
    Lin, Y. X.; Ling, X.; Yu, L. L.; Huang, S. X.; Hsu, A. L.; Lee, Y. H.; Kong, J.; Dresselhaus, M. S.; Palacios, T. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett. 2014, 14, 5569–5576.CrossRefGoogle Scholar
  37. [37]
    Eason, R. Pulsed Laser Deposition of Thin Films: Applications- Led Growth of Functional Materials; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2006.CrossRefGoogle Scholar
  38. [38]
    Toftmann, B.; Schou, J.; Hansen, T. N.; Lunney, J. G. Angular distribution of electron temperature and density in a laser-ablation plume. Phys. Rev. Lett. 2000, 84, 3998–4001.CrossRefGoogle Scholar
  39. [39]
    Serna, R.; Nuñez-Sanchez, S.; Xu, F.; Afonso, C. N. Enhanced photoluminescence of rare-earth doped films prepared by off-axis pulsed laser deposition. Appl. Surf. Sci. 2011, 257, 5204–5207.CrossRefGoogle Scholar
  40. [40]
    Nonnenmacher, M.; O’Boyle, M. P.; Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 1991, 58, 2921–2923.CrossRefGoogle Scholar
  41. [41]
    Stark, R. W.; Naujoks, N.; Stemmer, A. Multifrequency electrostatic force microscopy in the repulsive regime. Nanotechnology 2007, 18, 065502.CrossRefGoogle Scholar
  42. [42]
    Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.CrossRefGoogle Scholar
  43. [43]
    Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683.CrossRefGoogle Scholar
  44. [44]
    Rice, C.; Young, R. J.; Zan, R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K. S. Raman-scattering measurements and first-principles calculations of straininduced phonon shifts in monolayer MoS2. Phys. Rev. B 2013, 87, 081307.CrossRefGoogle Scholar
  45. [45]
    Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.CrossRefGoogle Scholar
  46. [46]
    Barnes, J. P.; Beer, N.; Petford-Long, A. K.; Suárez-García, A.; Serna, R.; Hole, D.; Weyland, M.; Midgley, P. A. resputtering and morphological changes of Au nanoparticles in nanocomposites as a function of the deposition conditions of the oxide capping layer. Nanotechnology 2005, 16, 718–723.CrossRefGoogle Scholar
  47. [47]
    Barnes, J. P.; Petford-Long, A. K.; Suárez-García, A.; Serna, R. Evidence for shallow implantation during the growth of bismuth nanocrystals by pulsed laser deposition. J. Appl. Phys. 2003, 93, 6396–6398.CrossRefGoogle Scholar
  48. [48]
    Klein, A.; Tomm, Y.; Schlaf, R.; Pettenkofer, C.; Jaegermann, W.; Lux-Steiner, M.; Bucher, E. Photovoltaic properties of WSe2 single-crystals studied by photoelectron spectroscopy. Sol. Energy Mater. Sol. Cells 1998, 51, 181–191.CrossRefGoogle Scholar
  49. [49]
    Stier, A. V; Wilson, N. P.; Clark, G.; Xu, X. D.; Crooker, S. A. Probing the Influence of dielectric environment on excitons in monolayer WSe2: Insight from high magnetic fields. Nano Lett. 2016, 16, 7054–7060.CrossRefGoogle Scholar
  50. [50]
    Griscom, D. L. Defect structure of glasses: Some outstanding questions in regard to vitreous silica. J. Non. Cryst. Solids 1985, 73, 51–77.CrossRefGoogle Scholar
  51. [51]
    Liu, D.; Clark, S. J.; Robertson, J. Oxygen vacancy levels and electron transport in Al2O3. Appl. Phys. Lett. 2010, 96, 032905.CrossRefGoogle Scholar
  52. [52]
    Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.CrossRefGoogle Scholar
  53. [53]
    Plechinger, G.; Nagler, P.; Kraus, J.; Paradiso, N.; Strunk, C.; Schü ller, C.; Korn, T. Identification of excitons, trions and biexcitons in single-layer WS2. Phys. Status Solidi Rapid Res. Lett. 2015, 9, 457–461.CrossRefGoogle Scholar
  54. [54]
    Zhang, D. K.; Kidd, D. W.; Varga, K. Excited biexcitons in transition metal dichalcogenides. Nano Lett. 2015, 15, 7002–7005.CrossRefGoogle Scholar
  55. [55]
    Choi, J.; Zhang, H. Y.; Choi, J. H. Modulating optoelectronic properties of two-dimensional transition metal dichalcogenide semiconductors by photoinduced charge transfer. ACS Nano 2016, 10, 1671–1680.CrossRefGoogle Scholar
  56. [56]
    Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 2014, 9, 257–261.CrossRefGoogle Scholar
  57. [57]
    Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G., Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 2014, 9, 268–272.CrossRefGoogle Scholar
  58. [58]
    Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788–3792.CrossRefGoogle Scholar
  59. [59]
    Mitioglu, A. A.; Plochocka, P.; Jadczak, J. N.; Escoffier, W.; Rikken, G. L. J. A.; Kulyuk, L.; Maude, D. K. Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Phys. Rev. B 2013, 88, 245403.CrossRefGoogle Scholar
  60. [60]
    Yamamoto, M.; Nakaharai, S.; Ueno, K.; Tsukagoshi, K. Self-limiting oxides on WSe2 as controlled surface acceptors and low-resistance hole contacts. Nano Lett. 2016, 16, 2720–2727.CrossRefGoogle Scholar
  61. [61]
    Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.CrossRefGoogle Scholar
  62. [62]
    Lin, J. D.; Han, C.; Wang, F.; Wang, R.; Xiang, D.; Qin, S. Q.; Zhang, X. A.; Wang, L.; Zhang, H.; Wee, A. T. S. et al. Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 2014, 8, 5323–5329.CrossRefGoogle Scholar
  63. [63]
    Kylänpää, I.; Komsa, H. P. Binding energies of exciton complexes in transition metal dichalcogenide monolayers and effect of dielectric environment. Phys. Rev. B 2015, 92, 205418.CrossRefGoogle Scholar
  64. [64]
    Mayers, M. Z.; Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R. Binding energies and spatial structures of small carrier complexes in monolayer transition-metal dichalcogenides via diffusion Monte Carlo. Phys. Rev. BCondens. Matter Mater. Phys. 2015, 92, 161404.CrossRefGoogle Scholar
  65. [65]
    Hichri, A.; Amara, I. B.; Ayari, S.; Jaziri, S. Exciton, trion and localized exciton in monolayer tungsten disulfide. arXiv: 1609. 05634v1, 2016.Google Scholar
  66. [66]
    Wang, G.; Bouet, L.; Lagarde, D.; Vidal, M.; Balocchi, A.; Amand, T.; Marie, X.; Urbaszek, B. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2. Phys. Rev. B 2014, 90, 075413.CrossRefGoogle Scholar
  67. [67]
    Schmidt, T.; Lischka, K.; Zulehner, W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 1992, 45, 8989–8994.CrossRefGoogle Scholar
  68. [68]
    Chiari, A.; Colocci, M.; Fermi, F.; Li, Y. H.; Querzoli, R.; Vinattieri, A.; Zhuang, W. H. Temperature dependence of the photoluminescence in GaAs-GaAlAs multiple quantum well structure. Phys. Status Solidi B 1988, 147, 421–429.CrossRefGoogle Scholar
  69. [69]
    Martín-Sánchez, J.; Trotta, R.; Piredda, G.; Schimpf, C.; Trevisi, G.; Seravalli, L.; Frigeri, P.; Stroj, S.; Lettner, T.; Reindl, M. et al. Reversible control of in-plane elastic stress tensor in nanomembranes. Adv. Opt. Mater. 2016, 4, 682–687.CrossRefGoogle Scholar
  70. [70]
    Trotta, R.; Martín-Sánchez, J.; Wildmann, J. S.; Piredda, G.; Reindl, M.; Schimpf, C.; Zallo, E.; Stroj, S.; Edlinger, J.; Rastelli, A. Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nat. Commun. 2016, 7, 10375.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Javier Martín-Sánchez
    • 1
    Email author
  • Antonio Mariscal
    • 2
  • Marta De Luca
    • 3
  • Aitana Tarazaga Martín-Luengo
    • 1
  • Georg Gramse
    • 4
  • Alma Halilovic
    • 1
  • Rosalía Serna
    • 2
  • Alberta Bonanni
    • 1
  • Ilaria Zardo
    • 3
  • Rinaldo Trotta
    • 1
    Email author
  • Armando Rastelli
    • 1
  1. 1.Institute of Semiconductor and Solid State PhysicsJohannes Kepler University LinzLinzAustria
  2. 2.Laser Processing Group, Instituto de ÓpticaCSICMadridSpain
  3. 3.Department of PhysicsUniversity of BaselBaselSwitzerland
  4. 4.Institute for BiophysicsJohannes Kepler University LinzLinzAustria

Personalised recommendations