Advertisement

Nano Research

, Volume 11, Issue 3, pp 1345–1357 | Cite as

Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium-sulfur batteries

  • Kena Chen
  • Jun Cao
  • Qiongqiong Lu
  • Qingrong Wang
  • Minjie Yao
  • Mingming Han
  • Zhiqiang NiuEmail author
  • Jun Chen
Research Article

Abstract

Rapid development of flexible electronic devices is promoting the design of flexible energy-storage devices. Lithium-sulfur (Li-S) batteries are considered as promising candidates for high energy density energy-storage devices. Therefore, flexible Li-S batteries are desired. In this study, we fabricated composite films of freestanding reduced graphene oxide nanotubes wrapped sulfur nanoparticles (RGONTs@S) by pressing RGONTs@S composite foams, which were synthesized by combining cold quenching with freeze-drying and a subsequent reduction process. These RGONTs@S composite films can serve as self-supporting cathodes for Li-S batteries without additional binders and conductive agents. Their interconnected tubular structure allows easy electron transport throughout the network and helps to confine the polysulfides produced during the charge/discharge process. As a result, the RGONTs@S composite films exhibited a high initial specific capacity, remarkable cycling stability, and excellent rate capability. More importantly, the RGONTs@S composite films can serve as electrodes in flexible Li-S batteries. As a proof of concept, soft-packaged Li-S batteries were assembled using these electrodes and they displayed stable electrochemical performance at different bending states.

Keywords

lithium-sulfur batteries graphene nanotubes flexible 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 21573116 and 21231005), Ministry of Education of China (Nos. B12015 and IRT13R30), and Tianjin Basic and High-Tech Development (No. 15JCYBJC17300). Z. Q. N. thanks the recruitment program of global experts.

Supplementary material

12274_2017_1749_MOESM1_ESM.pdf (1.9 mb)
Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium-sulfur batteries

References

  1. [1]
    Liu, W.; Song, M. S.; Kong, B.; Cui, Y. Flexible and stretchable energy storage: Recent advances and future perspectives. Adv. Mater. 2017, 29, 1603436.CrossRefGoogle Scholar
  2. [2]
    Xu, Y. F.; Zhang, Y.; Guo, Z. Y.; Ren, J.; Wang, Y. G.; Peng, H. S. Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets. Angew. Chem., Int. Ed. 2015, 54, 15390–15394.CrossRefGoogle Scholar
  3. [3]
    Liu, L. L.; Niu, Z. Q.; Chen, J. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem. Soc. Rev. 2016, 45, 4340–4363.CrossRefGoogle Scholar
  4. [4]
    Liu, L. L.; Niu, Z. Q.; Chen, J. Design and integration of flexible planar micro-supercapacitors. Nano Res. 2017, 10, 1524–1544.CrossRefGoogle Scholar
  5. [5]
    Chen, C.; Cao, J.; Lu, Q. Q.; Wang, X. Y.; Song, L.; Niu, Z. Q.; Chen, J. Foldable all-solid-state supercapacitors integrated with photodetectors. Adv. Funct. Mater. 2017, 27, 1604639.CrossRefGoogle Scholar
  6. [6]
    Liu, F.; Song, S. Y.; Xue, D. F.; Zhang, H. J. Folded structured graphene paper for high performance electrode materials. Adv. Mater. 2012, 24, 1089–1094.CrossRefGoogle Scholar
  7. [7]
    Sundramoorthy, A. K.; Wang, Y. C.; Gunasekaran, S. Low-temperature solution process for preparing flexible transparent carbon nanotube film for use in flexible supercapacitors. Nano Res. 2015, 8, 3430–3445.CrossRefGoogle Scholar
  8. [8]
    Wang, X. F.; Liu, B.; Hou, X. J.; Wang, Q. F.; Li, W. W.; Chen, D.; Shen, G. Z. Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Res. 2014, 7, 1073–1082.CrossRefGoogle Scholar
  9. [9]
    Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.CrossRefGoogle Scholar
  10. [10]
    Liang, J.; Sun, Z. H.; Li, F.; Cheng, H. M. Carbon materials for Li-S batteries: Functional evolution and performance improvement. Energy Storage Mater. 2016, 2, 76–106.CrossRefGoogle Scholar
  11. [11]
    Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.CrossRefGoogle Scholar
  12. [12]
    Cao, J.; Chen, C.; Zhao, Q.; Zhang, N.; Lu, Q. Q.; Wang, X. Y.; Niu, Z. Q.; Chen, J. A flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high-performance lithium-sulfur batteries with unconventional configurations. Adv. Mater. 2016, 28, 9629–9636.CrossRefGoogle Scholar
  13. [13]
    Peng, H. J.; Zhang, Z. W.; Huang, J. Q.; Zhang, G.; Xie, J.; Xu, W. T.; Shi, J. L.; Chen, X.; Cheng, X. B.; Zhang, Q. A cooperative interface for highly efficient lithium-sulfur batteries. Adv. Mater. 2016, 28, 9551–9558.CrossRefGoogle Scholar
  14. [14]
    Chung, S. H.; Chang, C. H.; Manthiram, A. A core-shell electrode for dynamically and statically stable Li-S battery chemistry. Energy Environ. Sci. 2016, 9, 3188–3200.CrossRefGoogle Scholar
  15. [15]
    Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.CrossRefGoogle Scholar
  16. [16]
    Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.CrossRefGoogle Scholar
  17. [17]
    Nelson, J.; Misra, S.; Yang, Y.; Jackson, A.; Liu, Y. J.; Wang, H. L.; Dai, H. J.; Andrews, J. C.; Cui, Y.; Toney, M. F. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J. Am. Chem. Soc. 2012, 134, 6337–6343.CrossRefGoogle Scholar
  18. [18]
    Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long–cycle lithium–sulphur batteries. Nat. Commun. 2013, 4, 1331.CrossRefGoogle Scholar
  19. [19]
    Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.CrossRefGoogle Scholar
  20. [20]
    Li, H. F.; Yang, X. W.; Wang, X. M.; Liu, M. N.; Ye, F. M.; Wang, J.; Qiu, Y. C.; Li, W. F.; Zhang, Y. G. Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode. Nano Energy 2015, 12, 468–475.CrossRefGoogle Scholar
  21. [21]
    Tao, X. Y.; Wang, J. G.; Liu, C.; Wang, H. T.; Yao, H. B.; Zheng, G. Y.; Seh, Z. W.; Cai, Q. X.; Li, W. Y.; Zhou, G. M. et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 2016, 7, 11203.CrossRefGoogle Scholar
  22. [22]
    Evers, S.; Nazar, L. F. New approaches for high energy density lithium-sulfur battery cathodes. Acc. Chem. Res. 2013, 46, 1135–1143.CrossRefGoogle Scholar
  23. [23]
    Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.CrossRefGoogle Scholar
  24. [24]
    Papandrea, B.; Xu, X.; Xu, Y. X.; Chen, C. Y.; Lin, Z. Y.; Wang, G. M.; Luo, Y. Z.; Liu, M.; Huang, Y. Q.; Mai, L. Q. et al. Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium-sulfur battery. Nano Res. 2016, 9, 240–248.CrossRefGoogle Scholar
  25. [25]
    Huang, J. Q.; Zhang, Q.; Wei, F. Multi-functional separator/ interlayer system for high-stable lithium-sulfur batteries: Progress and prospects. Energy Storage Mater. 2015, 1, 127–145.CrossRefGoogle Scholar
  26. [26]
    Zhao, Q.; Hu, X. F.; Zhang, K.; Zhang, N.; Hu, Y. X.; Chen, J. Sulfur nanodots electrodeposited on Ni foam as highperformance cathode for Li-S batteries. Nano Lett. 2015, 15, 721–726.CrossRefGoogle Scholar
  27. [27]
    Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/ graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.CrossRefGoogle Scholar
  28. [28]
    Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519–527.CrossRefGoogle Scholar
  29. [29]
    Zuo, P. J.; Zhang, W.; Hua, J. F.; Ma, Y. L.; Du, C. Y.; Cheng, X. Q.; Gao, Y. Z.; Yin, G. P. A novel one-dimensional reduced graphene oxide/sulfur nanoscroll material and its application in lithium sulfur batteries. Electrochimi. Acta 2016, 222, 1861–1869.CrossRefGoogle Scholar
  30. [30]
    Sun, Q.; Fang, X.; Weng, W.; Deng, J.; Chen, P. N.; Ren, J.; Guan, G. Z.; Wang, M.; Peng, H. S. An aligned and laminated nanostructured carbon hybrid cathode for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 10539–10544.CrossRefGoogle Scholar
  31. [31]
    Pang, Q.; Tang, J. T.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithiumsulfur batteries. Adv. Mater. 2015, 27, 6021–6028.CrossRefGoogle Scholar
  32. [32]
    Hu, G. J.; Xu, C.; Sun, Z. H.; Wang, S. G.; Cheng, H. M.; Li, F.; Ren, W. C. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv. Mater. 2016, 28, 1603–1609.CrossRefGoogle Scholar
  33. [33]
    Yuan, Z.; Peng, H. J.; Huang, J. Q.; Liu, X. Y.; Wang, D. W.; Cheng, X. B.; Zhang, Q. Hierarchical free-standing carbonnanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 6105–6112.CrossRefGoogle Scholar
  34. [34]
    Hu, G. J.; Sun, Z. H.; Shi, C.; Fang, R. P.; Chen, J.; Hou, P. X.; Liu, C.; Cheng, H. M.; Li, F. A sulfur-rich copolymer@ CNT hybrid cathode with dual-confinement of polysulfides for high-performance lithium-sulfur batteries. Adv. Mater. 2017, 29, 1603835.CrossRefGoogle Scholar
  35. [35]
    Xi, K.; Chen, B. G.; Li, H. L.; Xie, R. S.; Gao, C. L.; Zhang, C.; Kumar, R. V.; Robertson, J. Soluble polysulphide sorption using carbon nanotube forest for enhancing cycle performance in a lithium-sulphur battery. Nano Energy 2015, 12, 538–546.CrossRefGoogle Scholar
  36. [36]
    Yang, C. P.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. Electrochemical (de)lithiation of 1D sulfur chains in Li-S batteries: A model system study. J. Am. Chem. Soc. 2015, 137, 2215–2218.CrossRefGoogle Scholar
  37. [37]
    Zhou, G. M.; Wang, D. W.; Li, F.; Hou, P. X.; Yin, L. C.; Liu, C.; Lu, G. Q.; Gentle, I. R.; Cheng, H. M. A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries. Energy Environ. Sci. 2012, 5, 8901–8906.CrossRefGoogle Scholar
  38. [38]
    Shehzad, K.; Xu, Y.; Gao, C.; Duan, X. F. Three-dimensional macro-structures of two-dimensional nanomaterials. Chem. Soc. Rev. 2016, 45, 5541–5588.CrossRefGoogle Scholar
  39. [39]
    Zhou, G. M.; Yin, L. C.; Wang, D. W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. ACS Nano 2013, 7, 5367–5375.CrossRefGoogle Scholar
  40. [40]
    Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460.CrossRefGoogle Scholar
  41. [41]
    Tung, V. C.; Huang, J. H.; Tevis, I.; Kim, F.; Kim, J.; Chu, C. W.; Stupp, S. I.; Huang, J. X. Surfactant-free waterprocessable photoconductive all-carbon composite. J. Am. Chem. Soc. 2011, 133, 4940–4947.CrossRefGoogle Scholar
  42. [42]
    Liu, L. L.; Niu, Z. Q.; Zhang, L.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv. Mater. 2014, 26, 4855–4862.CrossRefGoogle Scholar
  43. [43]
    Braga, S. F.; Coluci, V. R.; Legoas, S. B.; Giro, R.; Galvão, D. S.; Baughman, R. H. Structure and dynamics of carbon nanoscrolls. Nano Lett. 2004, 4, 881–884.CrossRefGoogle Scholar
  44. [44]
    Zhao, J. P.; Yang, B. J.; Yang, Z.; Zhang, P.; Zheng, Z. M.; Ren, W. C.; Yan, X. B. Facile preparation of large-scale graphene nanoscrolls from graphene oxide sheets by cold quenching in liquid nitrogen. Carbon 2014, 79, 470–477.CrossRefGoogle Scholar
  45. [45]
    Zheng, J.; Liu, H. T.; Wu, B.; Guo, Y. L.; Wu, T.; Yu, G.; Liu, Y. Q.; Zhu, D. B. Production of high-quality carbon nanoscrolls with microwave spark assistance in liquid nitrogen. Adv. Mater. 2011, 23, 2460–2463.CrossRefGoogle Scholar
  46. [46]
    Xu, Z.; Zheng, B. N.; Chen, J. W.; Gao, C. Highly efficient synthesis of neat graphene nanoscrolls from graphene oxide by well-controlled lyophilization. Chem. Mater. 2014, 26, 6811–6818.CrossRefGoogle Scholar
  47. [47]
    Han, K.; Liu, Z.; Shen, J. M.; Lin, Y. Y.; Dai, F.; Ye, H. Q. a free-standing and ultralong-life lithium-selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture. Adv. Funct. Mater. 2015, 25, 455–463.CrossRefGoogle Scholar
  48. [48]
    He, G.; Hart, C. J.; Liang, X.; Garsuch, A.; Nazar, L. F. Stable cycling of a scalable graphene-encapsulated nanocomposite for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2014, 6, 10917–10923.CrossRefGoogle Scholar
  49. [49]
    Niu, Z. Q.; Chen, J.; Hng, H. H.; Ma, J.; Chen, X. D. A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater. 2012, 24, 4144–4150.CrossRefGoogle Scholar
  50. [50]
    Zhang, F. F.; Zhang, X. B.; Dong, Y. H.; Wang, L. M. Facile and effective synthesis of reduced graphene oxide encapsulated sulfur via oil/water system for high performance lithium sulfur cells. J. Mater. Chem. 2012, 22, 11452–11454.CrossRefGoogle Scholar
  51. [51]
    Zhang, J.; Yang, C. P.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries. Adv. Mater. 2016, 28, 9539–9544.CrossRefGoogle Scholar
  52. [52]
    Li, Z.; Zhang, J. T.; Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 12886–12890.CrossRefGoogle Scholar
  53. [53]
    Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 2013, 6, 38–46.CrossRefGoogle Scholar
  54. [54]
    Li, G. X.; Sun, J. H.; Hou, W. P.; Jiang, S. D.; Huang, Y.; Geng, J. X. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for highperformance lithium-sulfur batteries. Nat. Commun. 2016, 7, 10601.CrossRefGoogle Scholar
  55. [55]
    Zhang, C.; Lv, W.; Zhang, W. G.; Zheng, X. Y.; Wu, M. B.; Wei, W.; Tao, Y.; Li, Z. J.; Yang, Q. H. Reduction of graphene oxide by hydrogen sulfide: A promising strategy for pollutant control and as an electrode for Li-S batteries. Adv. Energy Mater. 2014, 4, 1301565.CrossRefGoogle Scholar
  56. [56]
    Wang, C.; Wang, X. S.; Wang, Y. J.; Chen, J. T.; Zhou, H. H.; Huang, Y. H. Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium-sulfur battery. Nano Energy 2015, 11, 678–686.CrossRefGoogle Scholar
  57. [57]
    Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.CrossRefGoogle Scholar
  58. [58]
    Zhang, L.; Ji, L. W.; Glans, P. A.; Zhang, Y. G.; Zhu, J. F.; Guo, J. H. Electronic structure and chemical bonding of a graphene oxide-sulfur nanocomposite for use in superior performance lithium-sulfur cells. Phys. Chem. Chem. Phys. 2012, 14, 13670–13675.CrossRefGoogle Scholar
  59. [59]
    Hou, T. Z.; Chen, X.; Peng, H. J.; Huang, J. Q.; Li, B. Q.; Zhang, Q.; Li, B. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries. Small 2016, 12, 3283–3291.CrossRefGoogle Scholar
  60. [60]
    Li, B.; Li, S. M.; Liu, J. H.; Wang, B.; Yang, S. B. Vertically aligned sulfur-graphene nanowalls on substrates for ultrafast lithium-sulfur batteries. Nano Lett. 2015, 15, 3073–3079.CrossRefGoogle Scholar
  61. [61]
    Wang, Z. Y.; Dong, Y. F.; Li, H. J.; Zhao, Z. B.; Wu, H. B.; Hao, C.; Liu, S. H.; Qiu, J. S.; Lou, X. W. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 2014, 5, 5002.CrossRefGoogle Scholar
  62. [62]
    Yuan, S. Y.; Guo, Z. Y.; Wang, L. N.; Hu, S.; Wang, Y. G.; Xia, Y. Y. Leaf-like graphene-oxide-wrapped sulfur for highperformance lithium-sulfur battery. Adv. Sci. 2015, 2, 1500071.CrossRefGoogle Scholar
  63. [63]
    Lin, C.; Niu, C. J.; Xu, X.; Li, K.; Cai, Z. Y.; Zhang, Y. L.; Wang, X. P.; Qu, L. B.; Xu, Y. X.; Mai, L. Q. A facile synthesis of three dimensional graphene sponge composited with sulfur nanoparticles for flexible Li-S cathodes. Phys. Chem. Chem. Phys. 2016, 18, 22146–22153.CrossRefGoogle Scholar
  64. [64]
    Ahn, W.; Seo, M. H.; Jun, Y. S.; Lee, D. U.; Hassan, F. M.; Wang, X. L.; Yu, A. P.; Chen, Z. W. Sulfur nanogranular film-coated three-dimensional graphene sponge-based high power lithium sulfur battery. ACS Appl. Mater. Interfaces 2016, 8, 1984–1991.CrossRefGoogle Scholar
  65. [65]
    Evers, S.; Nazar, L. F. Graphene-enveloped sulfur in a one pot reaction: A cathode with good coulombic efficiency and high practical sulfur content. Chem. Commun. 2012, 48, 1233–1235.CrossRefGoogle Scholar
  66. [66]
    Yu, M. P.; Wang, A. J.; Tian, F. Y.; Song, H. Q.; Wang, Y. S.; Li, C.; Hong, J. D.; Shi, G. Q. Dual-protection of a graphenesulfur composite by a compact graphene skin and an atomic layer deposited oxide coating for a lithium-sulfur battery. Nanoscale 2015, 7, 5292–5298.CrossRefGoogle Scholar
  67. [67]
    Luo, S. W.; Yao, M. J.; Lei, S.; Yan, P. Z.; Wei, X.; Wang, X. T.; Liu, L. L.; Niu, Z. Q. Freestanding reduced graphene oxide-sulfur composite films for highly stable lithium-sulfur batteries. Nanoscale 2017, 9, 4646–4651.CrossRefGoogle Scholar
  68. [68]
    Jin, J.; Wen, Z. Y.; Ma, G. Q.; Lu, Y.; Cui, Y. M.; Wu, M. F.; Liang, X.; Wu, X. W. Flexible self-supporting graphenesulfur paper for lithium sulfur batteries. RSC Adv. 2013, 3, 2558–2560.CrossRefGoogle Scholar
  69. [69]
    Xi, K.; Kidambi, P. R.; Chen, R. J.; Gao, C. L.; Peng, X. Y.; Ducati, C.; Hofmann, S.; Kumar, R. V. Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries. Nanoscale 2014, 6, 5746–5753.CrossRefGoogle Scholar
  70. [70]
    Chung, S. H.; Manthiram, A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries. Adv. Mater. 2014, 26, 7352–7357.CrossRefGoogle Scholar
  71. [71]
    Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. A graphenepure- sulfur sandwich structure for ultrafast, long-life lithiumsulfur batteries. Adv. Mater. 2014, 26, 625–631.CrossRefGoogle Scholar
  72. [72]
    Liu, M.; Zhou, D.; Jiang, H. R.; Ren, Y. X.; Kang, F. Y.; Zhao, T. S. A highly-safe lithium-ion sulfur polymer battery with SnO2 anode and acrylate-based gel polymer electrolyte. Nano Energy 2016, 28, 97–105.CrossRefGoogle Scholar
  73. [73]
    He, J. R.; Chen, Y. F.; Lv, W. Q.; Wen, K. C.; Xu, C.; Zhang, W. L.; Qin, W.; He, W. D. Three-dimensional CNT/graphene-Li2S aerogel as freestanding cathode for high-performance Li-S batteries. ACS Energy Lett. 2016, 1, 820–826.CrossRefGoogle Scholar
  74. [74]
    Lu, L. Q.; Lu, L. J.; Wang, Y. Sulfur film-coated reduced graphene oxide composite for lithium-sulfur batteries. J. Mater. Chem. A 2013, 1, 9173–9181.CrossRefGoogle Scholar
  75. [75]
    Sun, H.; Xu, G. L.; Xu, Y. F.; Sun, S. G.; Zhang, X. F.; Qiu, Y. C.; Yang, S. H. A composite material of uniformly dispersed sulfur on reduced graphene oxide: Aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries. Nano Res. 2012, 5, 726–738.CrossRefGoogle Scholar
  76. [76]
    Chung, S. H.; Chang, C. H.; Manthiram, A. Robust, ultratough flexible cathodes for high-energy Li-S batteries. Small 2016, 12, 939–950.CrossRefGoogle Scholar
  77. [77]
    Zeng, L. C.; Yao, Y.; Shi, J. N.; Jiang, Y.; Li, W. H.; Gu, L.; Yu, Y. A flexible S1–xSex@porous carbon nanofibers (x ≤ 0.1) thin film with high performance for Li-S batteries and room-temperature Na-S batteries. Energy Storage Mater. 2016, 5, 50–57.CrossRefGoogle Scholar
  78. [78]
    Peng, H. J.; Xu, W. T.; Zhu, L.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. 3D carbonaceous current collectors: The origin of enhanced cycling stability for high-sulfur-loading lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 6351–6358.CrossRefGoogle Scholar
  79. [79]
    He, G.; Ji, X. L.; Nazar, L. High “C” rate Li-S cathodes: Sulfur imbibed bimodal porous carbons. Energy Environ. Sci. 2011, 4, 2878–2883.CrossRefGoogle Scholar
  80. [80]
    Cheng, X. B.; Yan, C.; Huang, J. Q.; Li, P.; Zhu, L.; Zhao, L. D.; Zhang, Y. Y.; Zhu, W. C.; Yang, S. T.; Zhang, Q. The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection. Energy Storage Mater. 2017, 6, 18–25.CrossRefGoogle Scholar
  81. [81]
    Risse, S.; Angioletti-Uberti, S.; Dzubiella, J.; Ballauff, M. Capacity fading in lithium/sulfur batteries: A linear fourstate model. J. Power Sources 2014, 267, 648–654.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Kena Chen
    • 1
  • Jun Cao
    • 1
  • Qiongqiong Lu
    • 1
  • Qingrong Wang
    • 1
  • Minjie Yao
    • 1
  • Mingming Han
    • 1
  • Zhiqiang Niu
    • 1
    Email author
  • Jun Chen
    • 1
    • 2
  1. 1.Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of ChemistryNankai UniversityTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjinChina

Personalised recommendations