Advertisement

Nano Research

, Volume 11, Issue 3, pp 1322–1330 | Cite as

One-dimension carbon self-doping g-C3N4 nanotubes: Synthesis and application in dye-sensitized solar cells

  • Xue Li
  • Kai Pan
  • Yang QuEmail author
  • Guofeng WangEmail author
Research Article

Abstract

One-dimension carbon self-doping g-C3N4 nanotubes (CNT) with abundant communicating pores were synthesized via thermal polymerization of saturated or supersaturated urea inside the framework of a melamine sponge for the first time. A ∼16% improvement in photoelectric conversion efficiency (η) is observed for the devices fabricated with a binary hybrid composite of the obtained CNT and TiO2 compared to pure TiO2 device. The result of EIS analysis reveals that the interfacial resistance of the TiO2-dye|I3/I electrolyte interface of TiO2-CNT composite cell is much lower than that of pure TiO2 cell. In addition, the TiO2-CNT composite cell exhibits longer electron recombination time, shorter electron transport time, and higher charge collection efficiency than those of pure TiO2 cell. Systematic investigations reveal that the CNT boosts the light harvesting ability of the photovoltaic devices by enhancing not only the visible light absorption but also the charge separation and transfer.

Keywords

g-C3N4 nanotube photoelectric conversion solar cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 21501052 and 21471050), the China Postdoctoral Science Foundation (No. 2015M570304), the Postdoctoral Science Foundation of Heilongjiang Province (No. LBH-TZ06019), the Science Foundation for Excellent Youth of Harbin City of China (No. 2016RQQXJ099), and the Innovative Project of Postgraduate of Heilongjiang Province (No. YJSCX2017-153HLJU).

Supplementary material

12274_2017_1747_MOESM1_ESM.pdf (1.2 mb)
One-dimension carbon self-doping g-C3N4 nanotubes: Synthesis and application in dye-sensitized solar cells

References

  1. [1]
    Yin, H. J.; Tang, H. J.; Wang, D.; Gao, Y.; Tang, Z. Y. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano 2012, 6, 8288–8297.CrossRefGoogle Scholar
  2. [2]
    Shu, Q. K.; Wei, J. Q.; Wang, K. L.; Song, S.; Guo, N.; Jia, Y.; Li, Z.; Xu, Y.; Cao, A. Y.; Zhu, H. W. et al. Efficient energy conversion of nanotube/nanowire-based solar cells. Chem. Commun. 2010, 46, 5533–5535.CrossRefGoogle Scholar
  3. [3]
    Fu, Z. W.; Jiang, T. F.; Zhang, L. J.; Liu, B. K.; Wang, D. J.; Wang, L. L.; Xie, T. F. Surface treatment with Al3+ on a Ti-doped α-Fe2O3 nanorod array photoanode for efficient photoelectrochemical water splitting. J. Mater. Chem. A 2014, 2, 13705–13712.CrossRefGoogle Scholar
  4. [4]
    Liang, T.; Yan, D. Y.; Jiao, Y.; Wang, H.; Zheng, Y.; Zheng, X. L.; Mao, J.; Du, X. W.; Hu, Z. P.; Jaroniec, M. et al. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nat. Commun. 2016, 7, 12876.CrossRefGoogle Scholar
  5. [5]
    Dong, Y. Z.; Li, J. H. Tungsten nitride nanocrystals on nitrogen-doped carbon black as efficient electrocatalysts for oxygen reduction reactions. Chem. Commun. 2015, 51, 572–575.CrossRefGoogle Scholar
  6. [6]
    Xiao, J. Y.; Yang, Y. Y.; Xu, X.; Shi, J. J.; Zhu, L. F.; Lv, S. T.; Wu, H. J.; Luo, Y. H.; Li, D. M.; Meng, Q. B. Pressure-assisted CH3NH3PbI3 morphology reconstruction to improve the high performance of perovskite solar cells. J. Mater. Chem. A 2015, 3, 5289–5293.CrossRefGoogle Scholar
  7. [7]
    Zhang, N.; Qu, Y.; Pan, K.; Wang, G. F.; Li, Y. D. Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals for photocatalytic hydrogen production. Nano Res. 2016, 9, 726–734.CrossRefGoogle Scholar
  8. [8]
    Meng, L.; Ren, Z. Y.; Zhou, W.; Qu, Y.; Wang, G. F. MgTiO3/MgTi2O5/TiO2 heterogeneous belt-junctions with high photocatalytic hydrogen production activity. Nano Res. 2017, 10, 295–304.CrossRefGoogle Scholar
  9. [9]
    Yu, M. Q.; Qu, Y.; Pan, K.; Wang, G. F.; Li, Y. D. Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the synergetic effect of NaYF4:Er3+/Yb3+ and g-C3N4. Sci. China Mater. 2017, 60, 228–238.CrossRefGoogle Scholar
  10. [10]
    Ahmad, S.; Guillén, E.; Kavan, L.; Grätzel, M.; Nazeeruddin, M. K. Metal free sensitizer and catalyst for dye sensitized solar cells. Energy Environ. Sci. 2013, 6, 3439–3466.CrossRefGoogle Scholar
  11. [11]
    Mai, C. L.; Huang, W. K.; Lu, H. P.; Lee, C. W.; Chiu, C. L.; Liang, Y. R.; Diau, E. W. G.; Yeh, C. Y. Synthesis and characterization of diporphyrin sensitizers for dye-sensitized solar cells. Chem. Commun. 2010, 46, 809–811.CrossRefGoogle Scholar
  12. [12]
    Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, 629–634.CrossRefGoogle Scholar
  13. [13]
    Choi, H.; Raabe, I.; Kim, D.; Teocoli, F.; Kim, C.; Song, K.; Yum, J, H.; Ko, J.; Nazeeruddin, M. K.; Grätzel, M. High molar extinction coefficient organic sensitizers for efficient dye-sensitized solar cells. Chem.—Eur. J. 2010, 16, 1193–1201.CrossRefGoogle Scholar
  14. [14]
    Li, Y.; Wang, G. F.; Pan, K.; Jiang, B. J.; Tian, C. G.; Zhou, W.; Fu, H. G. NaYF4:Er3+/Yb3+-graphene composites: Preparation, upconversion luminescence, and application in dye-sensitized solar cells. J. Mater. Chem., 2012, 22, 20381–20386.CrossRefGoogle Scholar
  15. [15]
    Yang, N. L.; Zhai, J.; Wang, D.; Chen, Y. S.; Jiang, L. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 2010, 4, 887–894.CrossRefGoogle Scholar
  16. [16]
    Hwang, D.; Kim, D. Y.; Jang, S. Y.; Kim, D. Superior photoelectrodes for solid-state dye-sensitized solar cells using amphiphilic TiO2. J. Mater. Chem. A 2013, 1, 1228–1238.CrossRefGoogle Scholar
  17. [17]
    Guo, M.; Xie, K. Y.; Lin, J.; Yong, Z. H.; Yip, C. T.; Zhou, L. M.; Wang, Y.; Huang, H. T. Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell. Energy Environ. Sci. 2012, 5, 9881–9888.CrossRefGoogle Scholar
  18. [18]
    Rahman, M. M.; Im, S. H.; Lee, J. J. Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles. Nanoscale 2016, 8, 5884–5891.CrossRefGoogle Scholar
  19. [19]
    Lou, S.; Guo, X. M.; Fan, T. X.; Zhang, D. Butterflies: Inspiration for solar cells and sunlight water-splitting catalysts. Energy Environ. Sci. 2012, 5, 9195–9216.CrossRefGoogle Scholar
  20. [20]
    Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.CrossRefGoogle Scholar
  21. [21]
    Wang, Y. P.; Qu, Y.; Pan, K.; Wang, G. F.; Li, Y. D. Enhanced photoelectric conversion efficiency of dye sensitized solar cells via the incorporation of one dimensional luminescent BaWO4:Eu3+ nanowires. Chem. Commun. 2016, 52, 11124–11126.CrossRefGoogle Scholar
  22. [22]
    Yu, M. Q.; Su, J. M.; Wang, G. F.; Li, Y. D. Pt/Y2O3:Eu3+ composite nanotubes: Enhanced photoluminescence and application in dye-sensitized solar cells. Nano Res. 2016, 9, 2338–2346.CrossRefGoogle Scholar
  23. [23]
    Dong, Y. Z.; Pan, K.; Tian, G. H.; Zhou, W.; Pan, Q. J.; Xie, T. F.; Wang, D. J.; Fu, H. G. Dye-sensitized solar cells based on TiO2-B nanobelt/TiO2 nanoparticle sandwich-type photoelectrodes with controllable nanobelt length. Dalton Trans. 2011, 40, 3808–3814.CrossRefGoogle Scholar
  24. [24]
    Gao, J.; Zhou, Y.; Li, Z. S.; Yan, S. C.; Wang, N. Y.; Zou, Z. G. High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity. Nanoscale 2012, 4, 3687–3692.CrossRefGoogle Scholar
  25. [25]
    Chen, D.; Zhang, H.; Liu, Y.; Li, J. H. Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy Environ. Sci. 2013, 6, 1362–1387.CrossRefGoogle Scholar
  26. [26]
    Wang, S. P.; Li, C. J.; Wang, T.; Zhang, P.; Li, A.; Gong, J. L. Controllable synthesis of nanotube-type graphitic C3N4 and their visible-light photocatalytic and fluorescent properties. J. Mater. Chem. A 2014, 2, 2885–2890.CrossRefGoogle Scholar
  27. [27]
    Dai, X. P.; Li, Z. Z.; Ma, Y. D.; Liu, M. Z.; Du, K. L.; Su, H. X.; Zhou, H. Y.; Yu, L.; Sun, H.; Zhang, X. Metallic cobalt encapsulated in bamboo-like and nitrogen-rich carbonitride nanotubes for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 6439–6448.CrossRefGoogle Scholar
  28. [28]
    Liang, Q. H.; Li, Z.; Yu, X. L.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater. 2015, 27, 4634–4639.CrossRefGoogle Scholar
  29. [29]
    Wang, P.; Dai, Q.; Zakeeruddin, S.; Forsyth, M.; MacFarlane, D. R.; Grätzel, M. Ambient temperature plastic crystal electrolyte for efficient, all-solid-state dye-sensitized solar cell. J. Am. Chem. Soc. 2004, 126, 13590–13591.CrossRefGoogle Scholar
  30. [30]
    Hwang, D.; Lee, H.; Jang, S. Y.; Jo, S. M.; Kim, D.; Seo, Y.; Kim, D. Y. Electrospray preparation of hierarchically-structured mesoporous TiO2 spheres for use in highly efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2011, 3, 2719–2725.CrossRefGoogle Scholar
  31. [31]
    Sun, T.; Lu, M. Band-structure modulation of SrTiO3 by hydrogenation for enhanced photoactivity. Appl. Phys. A 2012, 108, 171–175.CrossRefGoogle Scholar
  32. [32]
    Yu, J. G.; Wang, S. H.; Low, J.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15, 16883–16890.CrossRefGoogle Scholar
  33. [33]
    Zhao, Z. W.; Sun, Y. J.; Dong, F.; Zhang, Y. X.; Zhao, H. Template-synthesis of carbon self-doped g-C3N4 with enhanced visible to near-infrared absorption and photocatalytic performance. RSC Adv. 2015, 5, 39549–39556.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials ScienceHeilongjiang UniversityHarbinChina

Personalised recommendations