Advertisement

Nano Research

, Volume 11, Issue 3, pp 1247–1261 | Cite as

Ligand density-dependent influence of arginine–glycine–aspartate functionalized gold nanoparticles on osteogenic and adipogenic differentiation of mesenchymal stem cells

  • Jingchao Li
  • Ying Chen
  • Naoki Kawazoe
  • Guoping ChenEmail author
Research Article

Abstract

Extracellular matrix (ECM) plays a very important role in regulating cell function and fate. It is highly desirable to fabricate biomimetic models to investigate the role of ECM in stem cell differentiation. In this study, arginine–glycine–aspartate (RGD)-modified gold nanoparticles (Au NPs) with tunable surface ligand density were prepared to mimic the ECM microenvironment. Their effect on osteogenic and adipogenic differentiation of human mesenchymal stem cells (MSCs) was investigated. The biomimetic Au NPs were taken up by MSCs in a ligand density-dependent manner. The biomimetic NPs with a high RGD density had an inhibitive effect on the alkaline phosphatase (ALP) activity, calcium deposition, and osteogenic marker gene expression of MSCs. Their effect on oil droplet formation and adipogenic marker gene expression was negative when RGD density was low, while their effect was promotive when RGD density was high. The biomimetic Au NPs regulated the osteogenic and adipogenic differentiation of MSCs mainly through affecting the focal adhesion and cytoskeleton. This study highlights the roles of biomimetic NPs on stem cell differentiation that could provide a meaningful strategy in fabricating functional biomaterials for tissue engineering and biomedical applications.

Keywords

arginine–glycine–aspartate (RGD) density biomimetic gold nanoparticles (Au NPs) osteogenic differentiation adipogenic differentiation mesenchymal stem cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the World Premier International Research Center Initiative (WPI) on Materials Nanoarchitectonics from the Ministry of Education, Culture, Sports, Science and Technology, Japan and JSPS KAKENHI Grant Number 15H03027.

Supplementary material

12274_2017_1738_MOESM1_ESM.pdf (1.7 mb)
Ligand density-dependent influence of arginine–glycine–aspartate functionalized gold nanoparticles on osteogenic and adipogenic differentiation of mesenchymal stem cells

References

  1. [1]
    Dahlin, R. L.; Kinard, L. A.; Lam, J.; Needham, C. J.; Lu, S.; Kasper, F. K.; Mikos, A. G. Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials 2014, 35, 7460–7469.CrossRefGoogle Scholar
  2. [2]
    Huebsch, N.; Lippens, E.; Lee, K.; Mehta, M.; Koshy, S. T.; Darnell, M. C.; Desai, R. M.; Madl, C. M.; Xu, M.; Zhao, X. H. et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat. Mater. 2015, 14, 1269–1277.CrossRefGoogle Scholar
  3. [3]
    Wang, X. L.; Nakamoto, T.; Dulińska-Molak, I.; Kawazoe, N.; Chen, G. P. Regulating the stemness of mesenchymal stem cells by tuning micropattern features. J. Mater. Chem. B 2016, 4, 37–45.CrossRefGoogle Scholar
  4. [4]
    Hung, K.-C.; Tseng, C.-S.; Dai, L.-G.; Hsu, S.-H. Waterbased polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials 2016, 83, 156–168.CrossRefGoogle Scholar
  5. [5]
    Lu, H. X.; Kawazoe, N.; Kitajima, T.; Myoken, U.; Tomita, M.; Umezawa, A.; Chen, G. P.; Ito, Y. Spatial immobilization of bone morphogenetic protein-4 in a collagen-PLGA hybrid scaffold for enhanced osteoinductivity. Biomaterials 2012, 33, 6140–6146.CrossRefGoogle Scholar
  6. [6]
    Hoshiba, T.; Kawazoe, N.; Tateishi, T.; Chen, G. P. Development of extracellular matrices mimicking stepwise adipogenesis of mesenchymal stem cells. Adv. Mater. 2010, 22, 3042–3047.CrossRefGoogle Scholar
  7. [7]
    Frantz, C.; Stewart, K. M.; Weaver, V. M. The extracellular matrix at a glance. J. Cell Sci. 2010, 123, 4195–4200.CrossRefGoogle Scholar
  8. [8]
    Ye, Z. Y.; Mahato, R. I. Role of nanomedicines in cellbased therapeutics. Nanomedicine 2008, 3, 5–8.CrossRefGoogle Scholar
  9. [9]
    Kumar, A.; Ma, H. L.; Zhang, X.; Huang, K. Y.; Jin, S. B.; Liu, J.; Wei, T.; Cao, W. P.; Zou, G. Z.; Liang, X.-J. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials 2012, 33, 1180–1189.CrossRefGoogle Scholar
  10. [10]
    Fernandez-Yague, M. A.; Abbah, S. A.; McNamara, L.; Zeugolis, D. I.; Pandit, A.; Biggs, M. J. Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv. Drug Deliv. Rev. 2015, 84, 1–29.CrossRefGoogle Scholar
  11. [11]
    Lim, S. H.; Mao, H.-Q. Electrospun scaffolds for stem cell engineering. Adv. Drug Deliv. Rev. 2009, 61, 1084–1096.CrossRefGoogle Scholar
  12. [12]
    Cai, R.; Nakamoto, T.; Hoshiba, T.; Kawazoe, N.; Chen, G. P. Matrices secreted during simultaneous osteogenesis and adipogenesis of mesenchymal stem cells affect stem cells differentiation. Acta Biomater. 2016, 35, 185–193.CrossRefGoogle Scholar
  13. [13]
    Adams, C. F.; Dickson, A. W.; Kuiper, J.-H.; Chari, D. M. Nanoengineering neural stem cells on biomimetic substrates using magnetofection technology. Nanoscale 2016, 8, 17869–17880.CrossRefGoogle Scholar
  14. [14]
    Oommen, O. P.; Wang, S. J.; Kisiel, M.; Sloff, M.; Hilborn, J.; Varghese, O. P. Smart design of stable extracellular matrix mimetic hydrogel: Synthesis, characterization, and in vitro and in vivo evaluation for tissue engineering. Adv. Funct. Mater. 2013, 23, 1273–1280.CrossRefGoogle Scholar
  15. [15]
    Lu, H. X.; Hoshiba, T.; Kawazoe, N.; Koda, I.; Song, M. H.; Chen, G. P. Cultured cell-derived extracellular matrix scaffolds for tissue engineering. Biomaterials 2011, 32, 9658–9666.CrossRefGoogle Scholar
  16. [16]
    Ott, H. C.; Matthiesen, T. S.; Goh, S.-K.; Black, L. D.; Kren, S. M.; Netoff, T. I.; Taylor, D. A. Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat. Med. 2008, 14, 213–221.CrossRefGoogle Scholar
  17. [17]
    Cai, R.; Nakamoto, T.; Kawazoe, N.; Chen, G. P. Influence of stepwise chondrogenesis-mimicking 3D extracellular matrix on chondrogenic differentiation of mesenchymal stem cells. Biomaterials 2015, 52, 199–207.CrossRefGoogle Scholar
  18. [18]
    Desseaux, S.; Klok, H.-A. Fibroblast adhesion on ECMderived peptide modified poly (2-hydroxyethyl methacrylate) brushes: Ligand co-presentation and 3D-localization. Biomaterials 2015, 44, 24–35.CrossRefGoogle Scholar
  19. [19]
    Dalby, M. J.; Gadegaard, N.; Oreffo, R. O. C. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat. Mater. 2014, 13, 558–569.CrossRefGoogle Scholar
  20. [20]
    Arnold, M.; Hirschfeld-Warneken, V. C.; Lohmüller, T.; Heil, P.; Bluümmel, J.; Cavalcanti-Adam, E. A.; López-García, M.; Walther, P.; Kessler, H.; Geiger, B. et al. Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing. Nano Lett. 2008, 8, 2063–2069.CrossRefGoogle Scholar
  21. [21]
    Lagunas, A.; Castaño, A. G.; Artés, J. M.; Vida, Y.; Collado, D.; Pérez-Inestrosa, E.; Gorostiza, P.; Claros, S.; Andrades, J. A.; Samitier, J. Large-scale dendrimer-based uneven nanopatterns for the study of local arginine-glycine-aspartic acid (RGD) density effects on cell adhesion. Nano Res. 2014, 7, 399–409.CrossRefGoogle Scholar
  22. [22]
    Smith, M. L.; Gourdon, D.; Little, W. C.; Kubow, K. E.; Eguiluz, R. A.; Luna-Morris, S.; Vogel, V. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 2007, 5, e268.CrossRefGoogle Scholar
  23. [23]
    Wang, X.; Yan, C.; Ye, K.; He, Y.; Li, Z. H.; Ding, J. D. Effect of RGD nanospacing on differentiation of stem cells. Biomaterials 2013, 34, 2865–2874.CrossRefGoogle Scholar
  24. [24]
    Gaharwar, A. K.; Mihaila, S. M.; Swami, A.; Patel, A.; Sant, S.; Reis, R. L.; Marques, A. P.; Gomes, M. E.; Khademhosseini, A. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv. Mater. 2013, 25, 3329–3336.CrossRefGoogle Scholar
  25. [25]
    Yoon, H. H.; Bhang, S. H.; Kim, T.; Yu, T.; Hyeon, T.; Kim, B. S. Dual roles of graphene oxide in chondrogenic differentiation of adult stem cells: Cell-adhesion substrate and growth factor-delivery carrier. Adv. Funct. Mater. 2014, 24, 6455–6464.CrossRefGoogle Scholar
  26. [26]
    Goenka, S.; Sant, V.; Sant, S. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Controlled Release 2014, 173, 75–88.CrossRefGoogle Scholar
  27. [27]
    Wang, S. G.; Zhao, J. L.; Hu, F.; Li, X; An, X.; Zhou, S. L.; Chen, Y.; Huang, M. X. Phase-changeable and bubblereleasing implants for highly efficient HIFU-responsive tumor surgery and chemotherapy. J. Mater. Chem. B 2016, 4, 7368–7378.CrossRefGoogle Scholar
  28. [28]
    Yu, M.; Lei, B.; Gao, C. B.; Yan, J.; Ma, P. X. Optimizing surface-engineered ultra-small gold nanoparticles for highly efficient miRNA delivery to enhance osteogenic differentiation of bone mesenchymal stromal cells. Nano Res. 2017, 10, 49–63.CrossRefGoogle Scholar
  29. [29]
    Shi, J. J.; Votruba, A. R.; Farokhzad, O. C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett. 2010, 10, 3223–3230.CrossRefGoogle Scholar
  30. [30]
    Chen, H. W.; Paholak, H.; Ito, M.; Sansanaphongpricha, K.; Qian, W.; Che, Y.; Sun, D. X. “Living” PEGylation on gold nanoparticles to optimize cancer cell uptake by controlling targeting ligand and charge densities. Nanotechnology 2013, 24, 355101.CrossRefGoogle Scholar
  31. [31]
    Huang, X. H.; Peng, X. H.; Wang, Y. Q.; Wang, Y. X.; Shin, D. M.; El-Sayed, M. A.; Nie, S. M. A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano 2010, 4, 5887–5896.CrossRefGoogle Scholar
  32. [32]
    Li, J. C.; Chen, Y.; Yang, Y. J.; Kawazoe, N.; Chen, G. P. Sub-10 nm gold nanoparticles promote adipogenesis and inhibit osteogenesis of mesenchymal stem cells. J. Mater. Chem. B 2017, 5, 1353–1362.CrossRefGoogle Scholar
  33. [33]
    Guo, Z. M.; He, B.; Jin, H. W.; Zhang, H. R.; Dai, W. B.; Zhang, L. R.; Zhang, H.; Wang, X. Q.; Wang, J. C.; Zhang, X. et al. Targeting efficiency of RGD-modified nanocarriers with different ligand intervals in response to integrin αvβ3 clustering. Biomaterials 2014, 35, 6106–6117.CrossRefGoogle Scholar
  34. [34]
    Li, J. C.; Li, J. E. J.; Zhang, J.; Wang, X. L.; Kawazoe, N.; Chen, G. P. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale 2016, 8, 7992–8007.CrossRefGoogle Scholar
  35. [35]
    Ahamed, M.; Akhtar, M. J.; Khan, M.; Alhadlaq, H. A.; Alshamsan, A. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2). Colloids Surf. B 2016, 148, 665–673.CrossRefGoogle Scholar
  36. [36]
    Cao, F.-Y.; Yin, W.-N.; Fan, J.-X.; Tao, L.; Qin, S.-Y.; Zhuo, R.-X.; Zhang, X.-Z. Evaluating the effects of charged oligopeptide motifs coupled with RGD on osteogenic differentiation of mesenchymal stem cells. ACS Appl. Mater. Interfaces 2015, 7, 6698–6705.CrossRefGoogle Scholar
  37. [37]
    Ko, W.-K.; Heo, D. N.; Moon, H.-J.; Lee, S. J.; Bae, M. S.; Lee, J. B.; Sun, I.-C.; Jeon, H. B.; Park, H. K.; Kwon, I. K. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J. Colloid Interface Sci. 2015, 438, 68–76.CrossRefGoogle Scholar
  38. [38]
    Xu, J. B.; Li, J. M.; Lin, S. E.; Wu, T. Y.; Huang, H. Q.; Zhang, K. Y.; Sun, Y. X.; Yeung, K. W. K.; Li, G.; Bian, L. M. Nanocarrier-mediated codelivery of small molecular drugs and siRNA to enhance chondrogenic differentiation and suppress hypertrophy of human mesenchymal stem cells. Adv. Funct. Mater. 2016, 26, 2463–2472.CrossRefGoogle Scholar
  39. [39]
    Li, J. C.; Mao, H. L.; Kawazoe, N.; Chen, G. P. Insight into the interactions between nanoparticles and cells. Biomater. Sci. 2017, 5, 173–189.CrossRefGoogle Scholar
  40. [40]
    Chun, C. J.; Lim, H. J.; Hong, K.-Y.; Park, K.-H.; Song, S.-C. The use of injectable, thermosensitive poly (organophosphazene)-RGD conjugates for the enhancement of mesenchymal stem cell osteogenic differentiation. Biomaterials 2009, 30, 6295–6308.CrossRefGoogle Scholar
  41. [41]
    Moore, N. M.; Lin, N. J.; Gallant, N. D.; Becker, M. L. Synergistic enhancement of human bone marrow stromal cell proliferation and osteogenic differentiation on BMP-2-derived and RGD peptide concentration gradients. Acta Biomater. 2011, 7, 2091–2100.CrossRefGoogle Scholar
  42. [42]
    Yang, F.; Williams, C. G.; Wang, D.-A.; Lee, H.; Manson, P. N.; Elisseeff, J. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 2005, 26, 5991–5998.CrossRefGoogle Scholar
  43. [43]
    Evans, N. D.; Gentleman, E.; Chen, X. Y.; Roberts, C. J.; Polak, J. M.; Stevens, M. M. Extracellular matrix-mediated osteogenic differentiation of murine embryonic stem cells. Biomaterials 2010, 31, 3244–3252.CrossRefGoogle Scholar
  44. [44]
    Yi, C. Q.; Liu, D. D.; Fong, C.-C.; Zhang, J. C.; Yang, M. S. Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano 2010, 4, 6439–6448.CrossRefGoogle Scholar
  45. [45]
    Chen, Q.; Shou, P. S.; Zhang, L. Y.; Xu, C. L.; Zheng, C. X.; Han, Y. Y.; Li, W. Z.; Huang, Y.; Zhang, X. R.; Shao, C. S. et al. An osteopontin-integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells. Stem Cells 2014, 32, 327–337.CrossRefGoogle Scholar
  46. [46]
    Kang, S. W.; Cha, B. H.; Park, H.; Park, K. S.; Lee, K. Y.; Lee, S. H. The effect of conjugating RGD into 3D alginate hydrogels on adipogenic differentiation of human adiposederived stromal cells. Macromol. Biosci. 2011, 11, 673–679.CrossRefGoogle Scholar
  47. [47]
    Lin, Y.-T.; Tang, C.-H.; Chuang, W.-J.; Wang, S.-M.; Huang, T.-F.; Fu, W.-M. Inhibition of adipogenesis by RGDdependent disintegrin. Biochem. Pharmacol. 2005, 70, 1469–1478.CrossRefGoogle Scholar
  48. [48]
    Chompoosor, A.; Saha, K.; Ghosh, P. S.; Macarthy, D. J.; Miranda, O. R.; Zhu, Z. J.; Arcaro, K. F.; Rotello, V. M. The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small 2010, 6, 2246–2249.CrossRefGoogle Scholar
  49. [49]
    Atashi, F.; Modarressi, A.; Pepper, M. S. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: A review. Stem Cells Dev. 2015, 24, 1150–1163.CrossRefGoogle Scholar
  50. [50]
    Wang, X. L.; Hu, X. H.; Dulińska-Molak, I.; Kawazoe, N.; Yang, Y. N.; Chen, G. P. Discriminating the independent influence of cell adhesion and spreading area on stem cell fate determination using micropatterned surfaces. Sci. Rep. 2016, 6, 28708.CrossRefGoogle Scholar
  51. [51]
    Liu, D. D.; Yi, C. Q.; Zhang, D. W.; Zhang, J. C.; Yang, M. S. Inhibition of proliferation and differentiation of mesenchymal stem cells by carboxylated carbon nanotubes. ACS Nano 2010, 4, 2185–2195.CrossRefGoogle Scholar
  52. [52]
    Qin, H.; Zhu, C.; An, Z. Q.; Jiang, Y.; Zhao, Y. C.; Wang, J. X.; Liu, X.; Hui, B.; Zhang, X. L.; Wang, Y. Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations. Int. J. Nanomed. 2014, 9, 2469–2478.CrossRefGoogle Scholar
  53. [53]
    Li, J. E. J.; Kawazoe, N.; Chen, G. P. Gold nanoparticles with different charge and moiety induce differential cell response on mesenchymal stem cell osteogenesis. Biomaterials 2015, 54, 226–236.CrossRefGoogle Scholar
  54. [54]
    Deng, J.; Zheng, H. H.; Zheng, X. W.; Yao, M. Y.; Li, Z.; Gao, C. Y. Gold nanoparticles with surface-anchored chiral poly (acryloyl-L (D)-valine) induce differential response on mesenchymal stem cell osteogenesis. Nano Res. 2016, 9, 3683–3694.CrossRefGoogle Scholar
  55. [55]
    Jiang, W.; Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 2008, 3, 145–150.CrossRefGoogle Scholar
  56. [56]
    You, M. L.; Peng, G. F.; Li, J.; Ma, P.; Wang, Z. H.; Shu, W. L.; Peng, S. W.; Chen, G.-Q. Chondrogenic differentiation of human bone marrow mesenchymal stem cells on polyhydroxyalkanoate (PHA) scaffolds coated with PHA granule binding protein PhaP fused with RGD peptide. Biomaterials 2011, 32, 2305–2313.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Jingchao Li
    • 1
    • 2
  • Ying Chen
    • 1
    • 2
  • Naoki Kawazoe
    • 1
    • 3
  • Guoping Chen
    • 1
    • 2
    • 3
    Email author
  1. 1.International Center for Materials NanoarchitectonicsNational Institute for Materials ScienceTsukuba, IbarakiJapan
  2. 2.Department of Materials Science and Engineering, Graduate School of Pure and Applied SciencesUniversity of TsukubaTsukuba, IbarakiJapan
  3. 3.Research Center for Functional MaterialsNational Institute for Materials ScienceTsukuba, IbarakiJapan

Personalised recommendations