Au nanocomposite enhanced electret film for triboelectric nanogenerator

  • 529 Accesses

  • 14 Citations


A triboelectric nanogenerator (TENG) with an organic nanocomposite electret thin film as the triboelectric layer for mechanical energy harvesting was investigated systematically. In combination with corona charging, a TENG was fabricated by using embedded-nanocapacitor-structure polytetrafluoroethylene (PTFE) impregnated with gold nanoparticles (Au-NPs). The output performances, stability, and durability of the TENGs with Au-PTFE nanocomposite films were characterized after being washed in water. It was found that the output current increases by 70% and the equivalent surface charge density (ESCD) reaches 85 μC/m2 in comparison to the virgin PTFE film. Such outstanding performance is likely due to the equivalent nanocapacitors between the Au-NPs and PTFE molecules, which serve as nano charge traps in the nanocomposite electret film under negative high-voltage corona charging. This work not only expands the practical applications of TENGs, but also opens up new possibilities for the development of high performance triboelectric materials.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA


  1. [1]

    Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

  2. [2]

    Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

  3. [3]

    Yang, W. Q.; Chen, J.; Zhu, G.; Yang, J.; Bai, P.; Su, Y. J.; Jing, Q. S.; Cao, X.; Wang, Z. L. Harvesting energy from the natural vibration of human walking. ACS Nano 2013, 7, 11317–11324.

  4. [4]

    Zi, Y. L.; Niu, S. M.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z. L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015, 6, 8376.

  5. [5]

    Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

  6. [6]

    Zhang, Q.; Liang, Q. J.; Liao, Q. L.; Yi, F.; Zheng, X.; Ma, M. Y.; Gao, F. F.; Zhang, Y. Service behavior of multifunctional triboelectric nanogenerators. Adv. Mater. 2016, 29, 1606703.

  7. [7]

    Zhang, Y.; Yang, Y.; Gu, Y. S.; Yan, X. Q.; Liao, Q. L.; Li, P. F.; Zhang, Z.; Wang, Z. Z. Performance and service behavior in 1-D nanostructured energy conversion devices. Nano Energy 2015, 14, 30–48.

  8. [8]

    Wang, J.; Li, S. M.; Yi, F.; Zi, Y. L.; Lin, J.; Wang, X. F.; Xu, Y. L.; Wang, Z. L. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.

  9. [9]

    Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.

  10. [10]

    Yi, F.; Wang, X. F.; Niu, S. M.; Li, S. M.; Yin, Y. J.; Dai, K. R.; Zhang, G. J.; Lin, L.; Wen, Z.; Guo, H. Y. et al. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci. Adv. 2016, 2, e1501624.

  11. [11]

    Wang, X. F.; Niu, S. M.; Yin, Y. J.; Yi, F.; You, Z.; Wang, Z. L. Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 2015, 5, 1501467.

  12. [12]

    Wang, Z. L. Catch wave power in floating nets. Nature 2017, 542, 159–160.

  13. [13]

    Chen, J.; Yang, J.; Li, Z. L.; Fan, X.; Zi, Y. L.; Jing, Q. S.; Guo, H. Y.; Wen, Z.; Pradel, K. C. Niu, S. M. et al. Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy. ACS Nano 2015, 9, 3324–3331.

  14. [14]

    Xi, Y.; Guo, H. Y.; Zi, Y. L.; Li, X. G.; Wang, J. Deng, J. N.; Li, S. M.; Hu, C. G.; Cao, X.; Wang, Z. L. Multifunctional TENG for blue energy scavenging and self-powered windspeed sensor. Adv. Energy Mater. 2017, 7, 1602397.

  15. [15]

    Zhang, C.; Tang, W.; Han, C. B.; Fan, F. R.; Wang, Z. L. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 2014, 26, 3580–3591.

  16. [16]

    Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.

  17. [17]

    Tang, W.; Jiang, T.; Fan, F. R.; Yu, A. F.; Zhang, C.; Cao, X.; Wang, Z. L. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 2015, 25, 3718–3725.

  18. [18]

    Tang, W.; Meng, B.; Zhang, H. X. Investigation of power generation based on stacked triboelectric nanogenerator. Nano Energy 2013, 2, 1164–1171.

  19. [19]

    Ha, M.; Park, J.; Lee, Y.; Ko, H. Triboelectric generators and sensors for self-powered wearable electronics. ACS Nano 2015, 9, 3421–3427.

  20. [20]

    Wang, J.; Li, S. M.; Yi, F.; Zi, Y. L.; Lin, J.; Wang, X. F.; Xu, Y. L.; Wang, Z. L. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.

  21. [21]

    Han, C. B.; Zhang, C.; Li, X. H.; Zhang, L. M.; Zhou, T.; Hu, W. G.; Wang, Z. L. Self-powered velocity and trajectory tracking sensor array made of planar triboelectric nanogenerator pixels. Nano Energy 2014, 9, 325–333.

  22. [22]

    Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

  23. [23]

    Wang, X.; Wang, S. H.; Yang, Y.; Wang, Z. L. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors. ACS Nano 2015, 9, 4553–4562.

  24. [24]

    Chen, S. W.; Gao, C. Z.; Tang, W.; Zhu, H. R.; Han, Y.; Jiang, Q. W.; Li, T. Cao, X.; Wang, Z. L. Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy 2015, 14, 217–225.

  25. [25]

    Sakane, Y.; Suzuki, Y.; Kasagi, N. The development of a high-performance perfluorinated polymer electret and its application to micro power generation. J. Micromech. Microeng. 2008, 18, 104011.

  26. [26]

    Yu, Z. Z.; Watson, P. K.; Facci, J. S. The contact charging of PTFE by mercury: The effect of a thiophene monolayer on charge exchange. J. Phys. D Appl. Phys. 1990, 23, 1207–1211.

  27. [27]

    Wei, X. Y.; Zhu, G.; Wang, Z. L. Surface-charge engineering for high-performance triboelectric nanogenerator based on identical electrification materials. Nano Energy 2014, 10, 83–89.

  28. [28]

    Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Liu, C.; Zhou, Y. S.; Wang, Z. L. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding. Adv. Mater. 2014, 26, 6720–6728.

  29. [29]

    Zhu, G.; Lin, Z. H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.

  30. [30]

    Cheng, G.; Zheng, L.; Lin, Z. H.; Yang, J.; Du, Z. L.; Wang, Z. L. Multilayered-electrode-based triboelectric nanogenerators with managed output voltage and multifold enhanced charge transport. Adv. Energy Mater. 2015, 5, 1401452.

  31. [31]

    Lin, Z. H.; Cheng, G.; Lee, S.; Pradel, K. C. Wang, Z. L. Harvesting water drop energy by a sequential contactelectrification and electrostatic-induction process. Adv. Mater. 2014, 26, 4690–4696.

  32. [32]

    Wu, Y. C.; Zhong, X. D.; Wang, X.; Yang, Y.; Wang, Z. L. Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies. Nano Res. 2014, 7, 1631–1639.

  33. [33]

    Paajanen, M.; Wegener, M.; Gerhard-Multhaupt, R. Understanding the role of the gas in the voids during corona charging of cellular electret films—A way to enhance their piezoelectricity. J. Phys. D Appl. Phys. 2001, 34, 2482–2488.

  34. [34]

    Zhou, T.; Zhang, L. M.; Xue, F.; Tang, W.; Zhang, C.; Wang, Z. L. Multilayered electret films based triboelectric nanogenerator. Nano Res. 2016, 9, 1442–1451.

  35. [35]

    Doyle, W. T.; Jacobs, I. S. Effective cluster model of dielectric enhancement in metal-insulator composites. Phys. Rev. B Condens. Matter 1990, 42, 9319–9327.

  36. [36]

    Doyle, W. T.; Jacobs, I. S. The influence of particle shape on dielectric enhancement in metal-insulator composites. J. Appl. Phys. 1992, 71, 3926–3936.

  37. [37]

    Sessler, G. M.; West, J. E. Studies of electret charges produced on polymer films by electron bombardment. J. Polym. Sci. Part B Polym. Lett. 1969, 7, 367–370.

  38. [38]

    Liu, C. Y.; Bard, A. J. Electrons on dielectrics and contact electrification. Chem. Phys. Lett. 2009, 480, 145–156.

  39. [39]

    Yu, Z. Z.; Watson, P. K. Contact charge accumulation and reversal on polystyrene and PTFE films upon repeated contacts with mercury. J. Phys. D Appl. Phys. 1989, 22, 798–801.

  40. [40]

    Yu, Z. Z.; Watson, K. Two-step model for contact charge accumulation. J. Electrostat. 2001, 51–52, 313–318.

Download references


Thanks for the support from National Natural Science Foundation of China (Nos. 61405131, 51432005, 5151101243, and 51561145021), the National Key R&D Project from Minister of Science and Technology (No. 2016YFA0202704), Beijing Municipal Science & Technology Commission (No. Y3993113DF), and the “thousands talents” program for pioneer researcher and his innovation team, China.

Author information

Correspondence to Zhong Lin Wang.

Electronic supplementary material

Au nanocomposite enhanced electret film for triboelectric nanogenerator

Supplementary material, approximately 4.10 MB.

Supplementary material, approximately 4.10 MB.

Supplementary material, approximately 2.55 MB.

Supplementary material, approximately 2.55 MB.

Supplementary material, approximately 4.48 MB.

Supplementary material, approximately 4.48 MB.

Supplementary material, approximately 2.99 MB.

Supplementary material, approximately 2.99 MB.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, B.D., Tang, W., Zhang, C. et al. Au nanocomposite enhanced electret film for triboelectric nanogenerator. Nano Res. 11, 3096–3105 (2018).

Download citation


  • equivalent nanocapacitor structure
  • polytetrafluoroethylene (PTFE) electret thin film
  • gold nanoparticles
  • equivalent surface charge density