Skip to main content
Log in

Hybrid windshield-glass heater for commercial vehicles fabricated via enhanced electrostatic interactions among a substrate, silver nanowires, and an over-coating layer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We introduce a transparent windshield-glass heater produced via transparent electrodes using silver nanowire (AgNW) networks for conventional use in the automobile industry. A high-quality conducting hybrid film is deposited on a plasma-treated glass substrate by spraying AgNWs, immersing the sprayed product in positively charged adhesive polymer solution, and then spraying negatively charged graphene oxide (GO) and a silane layer as an over-coating layer (OCL).The results of heating tests conducted after adhesion tests show that the sheet resistance changes with the application of polymer glue. Surprisingly, the transmittance of the film with the GO OCL is higher than that of the film without the GO OCL. Heating and defrosting tests are carefully conducted via infrared (IR) monitoring. Adhesive-polymer-treated and GO-protected AgNW transparent glass heaters exhibit the best performance with low sheet resistance; thus, through strong electrostatic interaction among the substrate, adhesive layer, and OCL, our AgNW hybrid glass heater can reach the target temperature with a standard vehicle voltage of 12 V in a short period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hecht, D. S.; Hu, L.; Irvin, G. Emerging transparent electrodes based on thin films ofcarbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

    Article  Google Scholar 

  2. Kumar, A.; Zhou, C. W. The race to replace tin-doped indiumoxide: Which material will win? ACS Nano, 2010, 4, 11–14.

    Article  Google Scholar 

  3. Schnorr, J. M.; Swager, T. M. Emerging applications of carbon nanotubes. Chem. Mater. 2011, 23, 646–657.

    Article  Google Scholar 

  4. Gruner, G. Carbon nanotube films for transparent and plastic electronics. J Mater Chem. 2006, 16, 3533–3539.

    Article  Google Scholar 

  5. Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M,; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.

    Article  Google Scholar 

  6. Pang, S. P.; Hernandez, Y.; Feng, X. L.; Müllen, K. Graphene as transparent electrode material for organicelectronics. Adv. Mater. 2011, 23, 2779–2795.

    Article  Google Scholar 

  7. Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 2010, 4, 611–622.

    Article  Google Scholar 

  8. Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P,; Cui, Y. Scalable coating and properties oftransparent, flexible, silver nanowireelectrodes. ACS Nano. 2010, 4, 2955–2963.

    Article  Google Scholar 

  9. Wu, J. B.; Agrawal, M.; Becerril, H. A.; Bao, Z. N.; Liu, Z. F.; Chen, Y. S.; Peumans, P. Organic light-emitting diodes onsolution-processed graphenetransparent electrodes. ACS Nano. 2010, 4, 43–48.

    Article  Google Scholar 

  10. Choi, M.-C.; Kim, Y.; Ha, C.-S. Polymers for flexible displays: From material selectionto device applications. Prog. Polym. Sci.. 2008, 33, 581–630.

    Article  Google Scholar 

  11. Wang, P,-C.; Liu, L.-H.; Mengistie, D. A.; Li, K. H.; Wen, B. J.; Liu, T. S.; Chu, C. W. Transparent electrodes based on conducting polymers for displayapplications. Displays. 2013, 34, 301–314.

    Article  Google Scholar 

  12. Zou, J. Y.; Yip, H. L.; Hau, S. K.; Jen, A. K. Y. Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells. Appl. Phys. Lett. 2010, 96, 203301.

    Article  Google Scholar 

  13. Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-processed metal nanowiremesh transparent electrodes. Nano Lett, 2008, 8, 689–692.

    Article  Google Scholar 

  14. Wu, H.; Kong, D. S.; Ruan, Z. C.; Hsu, P. C.; Wang, S.; Yu, Z. F.; Carney, T. J.; Hu, L. B.; Fan, S. H.; Cui, Y. A transparent electrode based on a metalnanotrough network. Nat. Nanotechnol. 2013, 8, 421–425.

    Article  Google Scholar 

  15. Kang, J.; Kim, H.; Kim, K. S.; Lee, S. K.; Bae, S.; Ahn, J. H.; Kim, Y. J.; Choi, J.-B.; Hong, B. H. High-performance graphene-based transparent flexible heaters. Nano Lett. 2011, 11, 5154.

    Article  Google Scholar 

  16. Geng, H.-Z.; Kim, K. K.; So, K. P.; Lee, Y. S.; Chang, Y.; Lee, Y. H. Effect of acid treatment on carbon nanotube-based flexible transparentconducting films. J. Am. Chem. Soc. 2007, 129, 7758–7759.

    Article  Google Scholar 

  17. Li, Y.; Cui, P.; Wang, L. Y.; Lee, H.; Lee, K.; Lee, H. Highly bendable, conductive, and transparent film by an enhancedadhesion of silver nanowires. ACS Appl. Mater. Inter. 2013, 5, 9155–9160.

    Article  Google Scholar 

  18. Kim, T.; Canlier, A.; Kim, G. H.; Choi, J.; Park, M.; Han, S. M. Electrostatic Spray Deposition of Highly Transparent Silver NanowireElectrode on Flexible Substrate. ACS Appl. Mater. Inter. 2012, 5, 788–794.

    Article  Google Scholar 

  19. Scardaci, V.; Coull, R.; Lyons, P. E.; Rickard, D.; Coleman, J. N. Spray deposition of highly transparent, low-resistancenetworks of silver nanowires over large areas. Small 2011, 7, 2621–2628.

    Article  Google Scholar 

  20. De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to opticalconductivity ratios. ACS Nano. 2009, 3, 1767–1774.

    Article  Google Scholar 

  21. Luu, Q. N.; Doorn, J. M.; Berry, M. T.; Jiang, C.; Lin, C.; May, P. S. Preparation and optical properties of silver nanowires and silver-nanowirethin films. J. Colloid Interf. Sci. 2011, 356, 151–158.

    Article  Google Scholar 

  22. Liu, C.-H.; Yu, X. Silver nanowire-based transparent, flexible, andconductive thin film. Nanoscale Res. Lett. 2011, 6, 75–82.

    Article  Google Scholar 

  23. Kumar, A. B. V. K.; Bae, C. W.; Piao, L. H.; Kim, S.-H. Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze. Mater. Res. Bull. 2013, 48, 2944–2949.

    Article  Google Scholar 

  24. Park, S.-E.; Kim, S.; Lee, D.-Y.; Kim, E.; Hwang, J. Fabrication of silver nanowire transparent electrodesusing electrohydrodynamic spray deposition for flexibleorganic solar cells. J. Mater. Chem.. A 2013, 1, 14286–14293.

    Article  Google Scholar 

  25. Zhang, X.; Yan, X. B.; Chen, J. T.; Zhao, J. P. Large-size graphene microsheets as a protectivelayer for transparent conductive silver nanowirefilm heaters. Carbon 2014, 69, 437–443.

    Article  Google Scholar 

  26. Kim, T. Y.; Kim, Y. W.; Lee, H. S.; Kim, H.; Yang, W. S.; Suh, K. S. Uniformly interconnected silver-nanowire networksfor transparent film heaters. Adv. Funct. Mater. 2013, 23, 1250–1255.

    Article  Google Scholar 

  27. Yim, J. H.; Joe, S. Y.; Pang, C.; Lee, K. M.; Jeong, H.; Park, J.-Y.; Ahn, Y. H.; de Mello, J. C.; Lee, S. Fully solution-processedsemitransparent organic solar cellswith a silver nanowire cathode anda conducting polymer anode. ACS Nano. 2014, 8, 2857–2863.

    Article  Google Scholar 

  28. Moon, I. K.; Kim, J. I.; Lee, H.; Hur, K.; Kim, W. C.; Lee, H. 2D graphene oxide nanosheets as anadhesive over-coating layer for flexibletransparent conductive electrodes. Sci. Rep. 2013, 3.1112–1120.

    Article  Google Scholar 

  29. Khaligh, H. H.; Goldthorpe, I. A. Failure of silver nanowire transparent electrodesunder current flow. Nanoscale Res. Lett. 2013, 8, 235–241.

    Article  Google Scholar 

  30. Jin, Y. X.; Deng, D. Y.; Cheng, Y. R.; Kong, L. Q.; Xiao, F. Annealing-free and strongly adhesive silvernanowire networks with long-term reliability byintroduction of a nonconductive andbiocompatible polymer binder. Nanoscale 2014, 6, 4812–4818.

    Article  Google Scholar 

  31. Xu. S.; Poirier, G.; Yao, N. Conductivity tuning of a silver nanowire mesh using an UV light. Microsc. Microanal. 2013, 19, 1972–1973.

    Article  Google Scholar 

  32. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoyoung Lee.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.M., Lee, J.H., Bak, S. et al. Hybrid windshield-glass heater for commercial vehicles fabricated via enhanced electrostatic interactions among a substrate, silver nanowires, and an over-coating layer. Nano Res. 8, 1882–1892 (2015). https://doi.org/10.1007/s12274-014-0696-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0696-4

Keywords

Navigation