Skip to main content
Log in

One-dimensional manganese borate hydroxide nanorods and the corresponding manganese oxyborate nanorods as promising anodes for lithium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Novel manganese and boron containing nanomaterials have been investigated for applications in rechargeable lithium ion batteries (LIBs) in recent years owing since they are more environmentally-benign and more abundant in nature than the materials currently employed. In this study, one-dimensional (1D) Mn3B7O13OH nanorods and MnBO2OH nanorod bundles were controllably fabricated by using NH4HB4O7 and Mn(NO3)2 as reagents via a hydrothermal or solvothermal process, respectively, without any surfactants or templates at 220 °C. It is interesting to find that both materials are transformed into Mn2OBO3 nanorods/nanorod bundles by subsequent calcination. The formation processes of the above 1D borate containing products were investigated and the as-obtained four kinds of borates were studied as novel anode materials. It was found that the Mn2OBO3 nanorods displayed the best performance among the four borates, delivering an initial discharge capacitiy of 1,172 mAh·g−1 at 100 mA·g−1, and 724 mAh·g−1 could be retained after 120 cycles. A full battery composed of a Mn2OBO3 nanorod anode and a commercial LiFePO4 (or LiCoO2) cathode has also been assembled for the first time, which delivered an initial discharge capacity of 949 mAh·g−1 (779 mAh·g−1 for LiCoO2). The excellent cycle and rate performances of the products reveal their potential applications as anodes for LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.

    Article  Google Scholar 

  2. Gong, Z. L.; Yang, Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ. Sci. 2011, 4, 3223–3242.

    Article  Google Scholar 

  3. Rowsell, J. L. C.; Gaubicher, J.; Nazar, L. F. A new class of materials for lithium-ion batteries: Iron (III) borates. J. Power Sources 2001, 97, 254–257.

    Article  Google Scholar 

  4. Rowsell, J. L. C.; Nazar, L. F. Synthesis, structure, and solid-state electrochemical properties of Cr3BO6: Anew chromium (III) borate with the norbergite structure. J. Mater. Chem. 2001, 11, 3228–3233.

    Article  Google Scholar 

  5. Okada, S.; Tonuma, T.; Uebo, Y.; Yamaki, J. I. Anode properties of calcite-type MBO3 (M: V, Fe). J.Power Sources 2003, 119, 621–625.

    Article  Google Scholar 

  6. Débart, A.; Revel, B.; Dupont, L.; Montagne, L.; Leriche, J. B.; Touboul, M.; Tarascon, J. M. Study of the reactivity mechanism of M3B2O6 (with M= Co, Ni, and Cu) toward lithium. Chem. Mater. 2003, 15, 3683–3691.

    Article  Google Scholar 

  7. Wang, T. Y.; Peng, Z.; Wang, Y. H.; Tang, J.; Zheng, G.F. MnOnanoparticle@ mesoporouscarbon composites grown on conducting substrates featuring high-performance lithium-ion battery, supercapacitorand sensor. Sci. Rep. 2013, 3, 2693.

    Google Scholar 

  8. Chang, L.; Mai, L. Q.; Xu, X.; An, Q. Y.; Zhao, Y. L.; Wang, D. D.; Feng, X. Pore-controlled synthesis of Mn2O3 microspheres for ultralong-life lithium storage electrode. RSC Adv. 2013, 3, 1947–1952.

    Article  Google Scholar 

  9. Li, L. H.; Nan, C. Y.; Lu, J.; Peng, Q.; Li, Y. D. α-MnO2 nanotubes: high surface area and enhanced lithium battery properties. Chem. Commun. 2012, 48, 6945–6947.

    Article  Google Scholar 

  10. Du, J.; Gao, Y. Q.; Chai, L. L.; Zou, G. F.; Li, Y.; Qian, Y.T. Hausmannite Mn3O4nanorods: Synthesis, characterization and magnetic properties. Nanotech. 2006, 17, 4923.

    Article  Google Scholar 

  11. Fernandes, J. C.; Sarrat, F. S.; Guimaraes, R. B.; Freitas, R. S.; Continentino, M. A.; Doriguetto, A. C.; Mascarenhas, Y. P.; Ellena, J.; Castellano, E. E.; Tholence, J. L. et al. Structure and magnetism of MnMgB2O5 and Mn2B2O5. Phys. Rev. B 2003, 67, 104413.

    Article  Google Scholar 

  12. Continentino, M. A.; Pedreira, A. M.; Guimaraes, R. B.; Mir, M.; Fernandes, J. C.; Freitas, R. S.; Ghivelder, L. Specific heat and magnetization studies of Fe2OBO3, Mn2OBO3, and MgScOBO3. Phys. Rev. B 2001, 64, 014406.

    Article  Google Scholar 

  13. Goff, R. J.; Williams, A. J.; Attfield, J. P. Spin, charge, and orbital order in Mn2OBO3. Phys. Rev. B, 2004, 70, 014426.

    Article  Google Scholar 

  14. Li, S. L.; Xu, L. Q.; Zhai, Y. J.; Yu, H. X. Co-pyrolysis synthesis of Fe3BO6nanorods as high performance anodes for lithium-ion batteries. RSC Adv. 2014, 4, 8245–8249.

    Article  Google Scholar 

  15. Norrestam, R.; Kritikos, M.; Sjödin, A. Manganese (II, III) oxyborate, Mn2OBO3: A distorted homometallicwarwickite-synthesis, crystal structure, band calculations, and magnetic susceptibility. J. Solid State Chem. 1995, 114, 311–316.

    Article  Google Scholar 

  16. Rivas-Murias, B.; Rivadulla, F.; Sánchez-Andújar, M.; Castro-Couceiro, A.; Señarís-Rodríguez, M. A.; Rivas, J. Role of t(2g) versus e(g) interactions in the physical properties of A(2)OBO(3) (A = Mn, Fe). Chem. Mater. 2006, 18, 4547–4552.

    Article  Google Scholar 

  17. Wang, Z. Y.; Luan, D. Y.; Boey, F. Y. C.; Lou, X. W. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. J. Am. Soc. 2011, 133, 4738–4741.

    Article  Google Scholar 

  18. Guo, C. X.; Wang, M.; Chen, T.; Lou, X. W.; Li, C. M. A hierarchically nanostructured composite of MnO2/conjugated polymer/graphene for high-performance lithium ion batteries. Adv. Energy Mater. 2011, 1, 736–741.

    Article  Google Scholar 

  19. Zhang, R. R.; He, Y. Y.; Li, A. H.; Xu, L. Q. Facile synthesis of one-dimensional Mn3O4/Zn2SnO4 hybrid composites and their high performance as anodes for LIBs. Nanoscale 2014, 6, 14221–14226.

    Article  Google Scholar 

  20. Zhang, R. R.; He, Y. Y.; Xu, L. Q. Controllable synthesis of hierarchical ZnSn(OH)6 and Zn2SnO4 hollow nanoshperes and their applications as anodes for lithium ion batteries. J. Mater. Chem. A 2014, 2, 17979–17985.

    Article  Google Scholar 

  21. Li, S. L.; Li, A. H.; Zhang, R. R.; He, Y. Y.; Zhai, Y. J.; Xu, L. Q. Hierarchical porous metal ferrite ball-in-ball hollow spheres: general synthesis, formation mechanism, and high performance as anode materials for Li-ion batteries. Nano Res. 2014, 7, 1116–1127.

    Article  Google Scholar 

  22. Li, L.; Kovalchuk, A.; Tour, J. M. SnO2-reduced grphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability. Nano Res. 2014, 7, 1319–1326.

    Article  Google Scholar 

  23. Xia, H.; Xiong, W.; Lim, C. K.; Yao, Q. F.; Wang, Y. D.; Xie, J. P. Hierarchical TiO2-B nanowire@α-Fe2O3nanothorn core-branch arrays as superior electrodes for lithium-ion microbatteries. Nano Res. 2014. (DOI: 10.1007/s12274-014-0539-3)

    Google Scholar 

  24. Hu, L.; Zhong, H.; Zheng, X. R.; Huang, Y. M.; Zhang P.; Chen, Q. W. CoMn2O4 spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci. Rep. 2012, 2, 986.

    Google Scholar 

  25. Hassoun, J.; Bonaccorso, F.; Agostini, M.; Angelucci, M.; Betti, M. G.; Cingolani, R.; Gemmi, M.; Mariani, C.; Panero, S.; Pellegrini, V. et al. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 2014, 14, 4901–4906.

    Article  Google Scholar 

  26. Hassoun, J.; Lee, K. S.; Sun, K. Y.; Scrosati, B. An advanced lithium ion battery based on high performance electrode materials. J. Am. Chem. Soc. 2011, 133, 3139–3143.

    Article  Google Scholar 

  27. Mai, Y. J.; Shi, S. J.; Zhang, D.; Lu, Y.; Gu, C. D.; Tu, J. P. NiO-graphene hybrid as an anode material for lithium ion batteries. J. Power Sources 2012, 204, 155–161.

    Article  Google Scholar 

  28. Mai, Y. J.; Xia, X. H.; Chen, R.; Gu, C. D.; Wang, X. L.; Tu, J. P. Self-supported nickel-coated NiO arrays for lithiumion batteries with enhanced capacity and rate capability. Electrochim. Acta 2012, 67, 73–78.

    Article  Google Scholar 

  29. Qiu, Y. C.; Xu, G. L.; Yan, K. Y.; Sun, H.; Xiao, J. W.; Yang, S. H.; Sun, S. G.; Jin, L. M.; Deng, H. Morphology-conserved transformation: synthesis of hierarchical mesoporous nanostructures of Mn2O3 and the nanostructural effects on Li-ion insertion/deinsertion properties. J. Mater. Chem. 2011, 21, 6346–6353.

    Article  Google Scholar 

  30. Shenouda A. Y.; Liu, H. K. Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode. J. Alloys Comp. 2009, 477, 498–503.

    Article  Google Scholar 

  31. Deng, Y. F.; Li, Z. E.; Shi, Z. C.; Xu, H.; Peng, F.; Chen, G. H. Porous Mn2O3 microsphere as a superior anode material for lithium ion batteries. RSC Adv. 2012, 2, 4645–4647.

    Article  Google Scholar 

  32. Lou, X. M.; Wu, X. Z.; Zhang, Y. X. A study about γ-MnOOH nanowires as anode materials for rechargeable Li-ion batteries. J. Alloys Comp. 2013, 550, 185–189.

    Article  Google Scholar 

  33. Lou, X. M.; Wu, X. Z.; Zhang, Y. X. Goethite nanorods as anode electrode materials for rechargeable Li-ion batteries. Electrochem. Commun. 2009, 11, 1696–1699.

    Article  Google Scholar 

  34. Kim, D. K.; Muralidharan, P.; Lee, H. W.; Ruffo, R.; Yang, Y.; Chan, C. K.; Peng, H. L.; Huggins, R. A.; Cui, Y. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 2008, 8, 3948–3952.

    Article  Google Scholar 

  35. Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale 2011, 3, 45–58.

    Article  Google Scholar 

  36. Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180.

    Article  Google Scholar 

  37. Jiang, J.; Luo, J. S.; Zhu, J. H.; Huang, X. T.; Liu, J. P.; Yu, T. Diffusion-controlled evolution of core-shell nanowire arrays into integrated hybrid nanotube arrays for Li-ion batteries. Nanoscale 2013, 5, 8105–8113.

    Article  Google Scholar 

  38. Zhang, X.; Qian, Y. T.; Zhu Y. C.; Tang, K. B. Synthesis of Mn2O3 nanomaterials with controllable porosity and thickness for enhanced lithium-ion batteries performance. Nanoscale 2014, 6, 1725–1731.

    Article  Google Scholar 

  39. Yoshio, M.; Tsumura, T.; Dimov, N. Electrochemical behaviors of silicon based anode material. J. Power Sources 2005, 146, 10–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Xu, L., Li, S. et al. One-dimensional manganese borate hydroxide nanorods and the corresponding manganese oxyborate nanorods as promising anodes for lithium ion batteries. Nano Res. 8, 554–565 (2015). https://doi.org/10.1007/s12274-014-0669-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0669-7

Keywords

Navigation