Skip to main content
Log in

Controlling the lateral and vertical dimensions of Bi2Se3 nanoplates via seeded growth

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Modulation of the morphology of nanostructures is often a rewarding but challenging task. We have employed the seeded growth method and induced kinetic control to synthesize Bi2Se3 nanoplates with modifiable morphology. By manipulating the rate at which precursor solutions were injected into seeds solution with syringe pumps, two distinctive growth modes could be realized. With a fast injection, the thickness of Bi2Se3 nanoplates slightly increased from ∼7.5 nm (seeds) to ∼9.5 nm while the edge length grew up from ∼160 nm (seeds) to ∼12 μm, after 6 successive rounds of seeded growth. With a slow injection, the thickness and edge length increased simultaneously to ∼35 nm and ∼6 μm after 6 rounds of growth, respectively. These two modes could be viewed as a competition between atomic deposition and surface migration. The products showed interesting, thickness-dependent Raman properties. In addition, NIR transparent, highly conductive and flexible Bi2Se3 thin films with different thicknesses were constructed by the assembly of the as-synthesized Bi2Se3 nanoplates. This approach based on seeded growth and kinetic control can significantly promote the development of versatile nanostructures with diverse morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, Y. F.; Cheng, H.; Gao, S.; Liu, Q. H.; Sun, Z. H.; Xiao, C.; Wu, C. Z.; Wei, S. Q.; Xie, Y. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. J. Am. Chem. Soc. 2012, 134, 20294–20297.

    Article  Google Scholar 

  2. Soni, A.; Yanyuan, Z.; Ligen, Y.; Aik, M. K. K.; Dresselhaus, M. S.; Xiong, Q. H. Enhanced thermoelectric properties of solution grown Bi2Te3−x Sexnanoplatelet composites. Nano Lett. 2012, 12, 1203–1209.

    Article  Google Scholar 

  3. Müchler, L.; Casper, F.; Yan, B. H.; Chadov, S.; Felser, C. Topological insulators and thermoelectric materials. Phys. Status Solidi RRL 2013, 7, 91–100.

    Article  Google Scholar 

  4. Moore, J. E. The birth of topological insulators. Nature 2010, 464, 194–198.

    Article  Google Scholar 

  5. Hasan, M. Z.; Kane, C. L. Topological insulators. Rev. Mod. Phys. 2010, 82, 3045.

    Article  Google Scholar 

  6. Qi, X.-L.; Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057.

    Article  Google Scholar 

  7. Zhang, H. J.; Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.-C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

    Article  Google Scholar 

  8. Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398–402.

    Article  Google Scholar 

  9. Kong, D. S.; Cui, Y. Opportunities in chemistry and materials science for topological insulators and their nanostructures. Nat. Chem. 2011, 3, 845–849.

    Article  Google Scholar 

  10. Cha, J. J.; Koski, K. J.; Cui, Y. Topological insulator nanostructures. Phys. Status Solidi RRL 2013, 7, 15–25.

    Article  Google Scholar 

  11. Zhuang, A. W.; Li, J. J.; Wang, Y. C.; Wen, X.; Lin, Y.; Xiang, B.; Wang, X. P.; Zeng, J. Screw-dislocation-driven bidirectional spiral growth of Bi2Se3nanoplates. Angew. Chem. Int. Ed. 2014, 25, 6543–6547.

    Article  Google Scholar 

  12. Kim, D.; Syers, P.; Butch, N. P.; Paglione, J.; Fuhrer, M. S. Ambipolarsurface state thermoelectric power of topological insulator Bi2Se3. Nanolett. 2014, 14, 1701–1706.

    Article  Google Scholar 

  13. Wyckoff, R. W. G. Crystal Structures; Krieger: Malabar, FL, 1986.

    Google Scholar 

  14. He, L.; Xiu, F. X.; Wang, Y.; Fedorov, A. V.; Huang, G.; Kou, X. F.; Lang, M. R.; Beyermann, W. P.; Zou, J.; Wang, K. L. Epitaxial growth of Bi2Se3 topological insulator thin films on Si (111). J. Appl. Phys. 2011, 109, 103702.

    Article  Google Scholar 

  15. Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y. Achieving surface quantum oscillations in topological insulator thin films of Bi2Se3. Adv. Mater. 2012, 24, 5581–5585.

    Article  Google Scholar 

  16. Peng, H. L.; Dang, W. H.; Cao, J.; Chen, Y. L.; Wu, D.; Zheng, W. S.; Li, H.; Shen, Z.-X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, 281–286.

    Article  Google Scholar 

  17. Dang, W. H.; Peng, H. L.; Li, H.; Wang, P.; Liu, Z. F. Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett. 2010, 10, 2870–2876.

    Article  Google Scholar 

  18. Li, H.; Cao, J.; Zheng, W. S.; Chen, Y. L.; Wu, D.; Dang, W. H.; Wang, K.; Peng, H. L.; Liu, Z. F. Controlled synthesis of topological insulator nanoplate arrays on mica. J. Am. Chem. Soc. 2012, 134, 6132–6135.

    Article  Google Scholar 

  19. Kong, D. S.; Dang, W. H.; Cha, J. J.; Li, H.; Meister, S.; Peng, H. L.; Liu, Z. F.; Cui, Y. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 2010, 10, 2245–2250.

    Article  Google Scholar 

  20. Gehring, P.; Gao, B. F.; Burghard, M.; Kern, K. Growth of high-mobility Bi2Te2Se nanoplatelets on hBN sheets by van der Waals epitaxy. Nano Lett. 2012, 12, 5137–5142.

    Article  Google Scholar 

  21. Guo, Y.; Aisijiang, M.; Zhang, K.; Jiang, W.; Chen, Y.; Zheng, W.; Song, Z.; Cao, J.; Liu, Z. F.; Peng, H. L. Selective-area Van der Waals epitaxy of topological insulator grid nanostructures for broadband transparent flexible electrodes. Adv. Mater. 2013, 25, 5959–5964.

    Article  Google Scholar 

  22. Kim, N.; Lee, P.; Kim, Y.; Kim, J. S.; Kim, Y.; Noh, D. Y.; Yu, S. U.; Chung, J.; Kim, K. S. Persistent topological surface state at the interface of Bi2Se3 film grown on patterned graphene. ACS Nano, 2014, 8, 1154–1160.

    Article  Google Scholar 

  23. Vargas, A.; Basak, S.; Liu, F. Z.; Wang, B. K.; Panaitescu, E.; Lin, H.; Markiewicz, R.; Bansil, A.; Kar, S. The changing colors of a quantum-confined topological insulator. ACS Nano, 2014, 8, 1222–1230.

    Article  Google Scholar 

  24. Min, Y.; Moon, G. D.; Kim, B. S.; Lim, B.; Kim, J.-S.; Kang, C. Y.; Jeong, U. Quick, controlled synthesis of ultrathin Bi2Se3nanodiscs and nanosheets. J. Am. Chem. Soc. 2012, 134, 2872–2875.

    Article  Google Scholar 

  25. Min, Y.; Roh, J. W.; Yang, H.; Park, M.; Kim, S. I.; Hwang, S.; Lee, S. M.; Lee, K. H.; Jeong, U. Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Adv. Mater. 2013, 25, 1425–1429.

    Article  Google Scholar 

  26. Zhang, J.; Peng, Z. P.; Soni, A.; Zhao, Y. Y.; Xiong, Y.; Peng, B.; Wang, J. B.; Dresselhaus, M. S.; Xiong, Q. H. Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3nanoplatelets. Nano Lett. 2011, 11, 2407–2414.

    Article  Google Scholar 

  27. Kong, D. S.; Koski, K. J.; Cha, J. J.; Hong, S. S.; Cui, Y. Ambipolar field effect in Sb-doped Bi2Se3nanoplates by solvothermal synthesis. Nano Lett. 2013, 13, 632–636.

    Article  Google Scholar 

  28. Yu, J.-K.; Mitrovic, S.; Tham, D.; Varghese, J.; Heath, J. R. Reduction of thermal conductivity in phononicnanomesh structures. Nat. Nanotechnol. 2010, 5, 718–721.

    Article  Google Scholar 

  29. Son, J. S.; Park, K.; Han, M.-K.; Kang, C.; Park, S.-G.; Kim, J.-H.; Kim, W.; Kim, S.-J.; Hyeon, T. Large-scale synthesis and characterization of the size-dependent thermoelectric properties of uniformly sized bismuth nanocrystals. Angew. Chem. Int. Ed. 2011, 123, 1399–1402.

    Article  Google Scholar 

  30. Zuev, Y. M.; Lee, J. S.; Galloy, C.; Park, H.; Kim, P. Diameter dependence of the transport properties of antimony telluride nanowires. Nano Lett. 2010, 10, 3037–3040.

    Article  Google Scholar 

  31. Dirmyer, M. R.; Martin, J.; Nolas, G. S.; Sen, A.; Badding, J. V. Thermal and electrical conductivity of size-tuned bismuth telluride nanoparticles. Small 2009, 5, 933–937.

    Article  Google Scholar 

  32. Linder, J.; Yokoyama, T.; Sudbø, A. Anomalous finite size effects on surface states in the topological insulator Bi2Se3. Phys. Rev. B 2009, 80, 205401.

    Article  Google Scholar 

  33. Lu, H.-Z.; Shan, W.-Y.; Yao, W.; Niu, Q.; Shen, S.-Q. Massive Dirac fermions and spin physics in an ultrathin film of topological insulator. Phys. Rev. B 2010, 81, 115407.

    Article  Google Scholar 

  34. Liu, C.-X.; Zhang, H.-J.; Yan, B. H.; Qi, X.-L.; Frauenheim, T.; Dai, X.; Fang, Z.; Zhang, S. C. Oscillatory crossover from two-dimensional to three-dimensional topological insulators. Phys. Rev. B 2010, 81, 041307.

    Article  Google Scholar 

  35. Zhang, Y.; He, K.; Chang, C.-Z.; Song, C.-L.; Wang, L.-L.; Chen, X.; Jia, J.-F.; Fang, Z.; Dai, X.; Shan, W.-Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.

    Article  Google Scholar 

  36. Bansal, N.; Cho, M. R.; Brahlek, M.; Koirala, N.; Horibe, Y.; Chen, J.; Wu, W. D.; Park, Y. D.; Oh, S. Transferring MBE-grown topological insulator films to arbitrary substrates and metal-insulator transition via Dirac gap. Nano Lett. 2014, 14, 1343–1348.

    Article  Google Scholar 

  37. Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

    Article  Google Scholar 

  38. Zeng, J.; Zheng, Y. Q.; Rycenga, M.; Tao, J.; Li, Z.-Y.; Zhang, Q.; Zhu, Y. M.; Xia, Y. N. Controlling the shapes of silver nanocrystals with different capping agents. J. Am. Chem. Soc. 2010, 132, 8552–8553.

    Article  Google Scholar 

  39. Langille, M. R.; Zhang, J.; Personick, M. L.; Li, S. Y.; Mirkin, C. A. Stepwise evolution of spherical seeds into 20-fold twinned icosahedra. Science 2012, 337, 954–957.

    Article  Google Scholar 

  40. Li, P.; Wei, Z.; Wu, T.; Peng, Q.; Li, Y. D. Au-ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 5660–5663.

    Article  Google Scholar 

  41. Fiore, A.; Mastria, R.; Lupo, M. G.; Lanzani, G.; Giannini, C.; Carlino, E.; Morello, G.; Giorgi, M. D.; Li, Y. Q.; Cingolani, R.; Manna, L. Tetrapod-shaped colloidal nanocrystals of II–VI semiconductors prepared by seeded growth. J. Am. Chem. Soc. 2009, 131, 2274–2282.

    Article  Google Scholar 

  42. Zhang, Q.; Hu, Y. X.; Guo, S. R.; Goebl, J.; Yin, Y. D. Seeded growth of uniform Ag nanoplates with high aspect ratio and widely tunable surface plasmon bands. Nano Lett. 2010, 10, 5037–5042.

    Article  Google Scholar 

  43. Zeng, J.; Zhu, C.; Tao, J.; Jin, M. S.; Zhang, H.; Li, Z.-Y.; Zhu, Y. M.; Xia, Y. N. Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics. Angew. Chem. Int. Ed. 2012, 51, 2354–2358.

    Article  Google Scholar 

  44. Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem. Int. Ed. 2010, 49, 4878–4897.

    Article  Google Scholar 

  45. Zheng, H. M.; Smith, R. K.; Jun, Y.-W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312.

    Article  Google Scholar 

  46. Markov, I. V. Crystal Growth For Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy, 1st ed.; World Scientific Publishing Co. Pte. Ltd.: Singapore, 1995.

    Book  Google Scholar 

  47. Richter, W.; Becker, C. R. A Raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−x Sex)3 (0 <x< 1), (Bi1−y Sby)2Te3 (0 <y< 1). Phys. Status Solidi B 1977, 84, 619–628.

    Article  Google Scholar 

  48. He, Q. Y.; Wu, S. X.; Gao, S.; Cao, X. H.; Yin, Z. Y.; Li, H.; Chen, P.; Zhang, H. Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 2011, 5, 5038–5044.

    Article  Google Scholar 

  49. Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S. E.; Sim, S. H.; Song, Y. I.; Hong, B. H.; Ahn, J. H. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 2010, 10, 490–493.

    Article  Google Scholar 

  50. Feng, J.; Sun, X.; Wu, C. Z.; Peng, L. L.; Lin, C. W.; Hu, S. L.; Yang, J. L.; Xie, Y. Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 2011, 133, 17832–17838.

    Article  Google Scholar 

  51. Zhao, Y. X.; Dyck, J. S.; Hernandez, B. M.; Burda, C. Improving thermoelectric properties of chemically synthesized Bi2Te3-based nanocrystals by annealing. J. Phys. Chem. C. 2010, 114, 11607–11613.

    Article  Google Scholar 

  52. Xu, H. M.; Chen, G.; Jin, R. C.; Chen, D. H.; Wang, Y.; Pei, J.; Yan, C. S.; Zhang, Y. Q.; Qiu, Z. Z. Enhancement of the Seebeckcoefficient in stacked Bi2Se3nanoplatesby energy filtering. Eur. J. Inorg. Chem. 2014, 16, 2625–2630.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Unyong Jeong or Jie Zeng.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, A., Zhao, Y., Liu, X. et al. Controlling the lateral and vertical dimensions of Bi2Se3 nanoplates via seeded growth. Nano Res. 8, 246–256 (2015). https://doi.org/10.1007/s12274-014-0657-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0657-y

Keywords

Navigation