Nano Research

, Volume 7, Issue 2, pp 236–245 | Cite as

Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method

  • Teppei Araki
  • Jinting Jiu
  • Masaya Nogi
  • Hirotaka Koga
  • Shijo Nagao
  • Tohru Sugahara
  • Katsuaki Suganuma
Research Article


Transparent electrodes made of silver nanowires (AgNWs) exhibit higher flexibility when compared to those made of tin doped indium oxide (ITO) and are expected to be applied in plastic electronics. However, these transparent electrodes composed of AgNWs show high haze because the wires cause strong light scattering in the visible range. Reduction of the wire diameter has been proposed as a way to weaken light scattering, although there have seldom been any studies focusing on the haze because of the difficulty involved in controlling the wire diameter. In this report, we show that the haze can be easily reduced by increasing the length of AgNWs with a large diameter. Ultra-long (u-long) AgNWs with lengths in the range of 20–100 μm and a maximum length of 230 μm have been successfully synthesized by adjusting the reaction temperature and the stirring speed of a one-step polyol process. Compared to typical AgNWs (with diameter and length of 70 nm and 10 μm, respectively) and ITO, a transparent electrode consisting of u-long AgNWs 91 nm in diameter demonstrated a low haze of 3.4%-1.6% and a low sheet resistance of 24–109 Ω/sq. at a transmittance of 94%–97%. Even when fabricated at room temperature without any post-treatment, the electrodes composed of u-long AgNWs achieved a sheet resistance of 19 Ω/sq. at a transmittance of 80%, which is six orders of magnitude lower than that of typical AgNWs.


ultra-long silver nanowires one-step synthesis transparent electrodes haze 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_391_MOESM1_ESM.pdf (545 kb)
Supplementary material, approximately 554 KB.


  1. [1]
    Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B. Hebard, A. F., et al. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.CrossRefGoogle Scholar
  2. [2]
    Cao, Q.; Zhu, Z.-T.; Lemaitre, M. G.; Xia, M.-G.; Shim, M.; Rogers, J. A. Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes. Appl. Phys. Lett. 2006, 88, 113511.CrossRefGoogle Scholar
  3. [3]
    Dan, B.; Irvin, G. C.; Pasquali, M. Continuous and scalable fabrication of transparent conducting carbon nanotube films. ACS Nano 2009, 3, 835–843.CrossRefGoogle Scholar
  4. [4]
    Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.CrossRefGoogle Scholar
  5. [5]
    Wang, X.; Zhi, L.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.CrossRefGoogle Scholar
  6. [6]
    Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.; Song, Y., et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.CrossRefGoogle Scholar
  7. [7]
    Tvingstedt, K.; Inganäs, O. Electrode grids for ITO free organic photovoltaic devices. Adv. Mater. 2007, 19, 2893–2897.CrossRefGoogle Scholar
  8. [8]
    O’Connor, B.; Haughn, C.; An, K.-H.; Pipe, K. P.; Shtein, M. Transparent and conductive electrodes based on unpatterned, thin metal films. Appl. Phys. Lett. 2008, 93, 223304.CrossRefGoogle Scholar
  9. [9]
    Kang, M.-G.; Kim, M.-S.; Kim, J. S.; Guo, L. J. Organic solar cells using nanoimprinted transparent metal electrodes. Adv. Mater. 2008, 20, 4408–4413.CrossRefGoogle Scholar
  10. [10]
    Hu, L.; Kim, H.; Lee, J.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.CrossRefGoogle Scholar
  11. [11]
    De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774.CrossRefGoogle Scholar
  12. [12]
    Hu, L.; Wu, H.; Cui, Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull. 2011, 36, 760–765.CrossRefGoogle Scholar
  13. [13]
    Madaria, A. R; Kumar A.; Zhou, C. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 2011, 22, 245201.CrossRefGoogle Scholar
  14. [14]
    Lee, J.; Lee, P.; Lee, H.; Lee, D.; Lee, S.; Ko, S. H. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 2012, 4, 6408–6414.CrossRefGoogle Scholar
  15. [15]
    Tokuno, T.; Nogi, M.; Karakawa, M.; Jiu, J.; Nge, T.; Aso, Y.; Suganuma, K. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 2011, 4, 1215–1222.CrossRefGoogle Scholar
  16. [16]
    Mayousse, C.; Celle, C.; Moreau, E.; Mainguet, J.; Carella, A.; Simonato, J. Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors. Nanotechnology 2013, 24, 215501.Google Scholar
  17. [17]
    Coskun, S.; Ates, E. S.; Unalan, H. E. Optimization of silver nanowire networks for polymer light emitting diode electrodes. Nanotechnology 2013, 24, 125202.CrossRefGoogle Scholar
  18. [18]
    Gaynor, W.; Lee, J.; Peumans, P. Fully solution-processed inverted polymer solar cells with laminated nanowire electrodes. ACS Nano 2009, 4, 30–34.CrossRefGoogle Scholar
  19. [19]
    Gaskell, J. M.; Sheel, D. W. Deposition of indium tin oxide by atmospheric pressure chemical vapour deposition. Thin Solid Films 2012, 520, 4110–4113.CrossRefGoogle Scholar
  20. [20]
    Kim, T.; Canlier, A.; Kim, G.; Choi, J.; Park, M.; Han, S. Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate. ACS Appl. Mater. Inter. 2013, 5, 788–794.CrossRefGoogle Scholar
  21. [21]
    Cronin, J. P.; Trosky, M.; Agrawal, A. Reduction of haze in tin oxide transparent conductive coatings on glass. US Patent, 6,268,059 B1, 2001.Google Scholar
  22. [22]
    Hecht, D. S.; Thomas, D.; Hu, L.; Ladous, C.; Lam, T.; Park, Y.; Irvin, G.; Drzaic, P. Carbon-nanotube film on plastic as transparent electrode for resistive touch screens. J. Soc. Inf. Display 2009, 17, 941–946.CrossRefGoogle Scholar
  23. [23]
    Yamada, T.; Ishihara, M.; Hasegawa, M. Large area coating of graphene at low temperature using a roll-to-roll microwave plasma chemical vapor deposition. Thin Solid Films 2013, 532, 89–93.CrossRefGoogle Scholar
  24. [24]
    Wu, J.; Agrawal, M.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 2010, 4, 43–48.CrossRefGoogle Scholar
  25. [25]
    Katagiri, K.; Hunakubo, T. Metal nanowires, method for producing same, transparent conductor and touch panel. US Patent Appl., 20120255762 A1, 2012.Google Scholar
  26. [26]
    Preston, C.; Xu, Y.; Han, X.; Munday, J. N.; Hu, L. Optical haze of transparent and conductive silver nanowire films. Nano Res. 2013, 6, 461–468.CrossRefGoogle Scholar
  27. [27]
    Sun, Y.; Gates, B.; Mayers, B.; Xia, Y. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165–168.CrossRefGoogle Scholar
  28. [28]
    Jiu, J.; Murai, K.; Kim, D.; Kim, K.; Suganuma, K. Preparation of Ag nanorods with high yield by polyol process. Mater. Chem. Phys. 2009, 114, 333–338.CrossRefGoogle Scholar
  29. [29]
    Lee, J.; Lee, P.; Lee, D.; Lee, S.; Ko, S. H. Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth. Cryst. Growth Des. 2012, 12, 5598–5605CrossRefGoogle Scholar
  30. [30]
    Bergin, S. M.; Chen, Y.; Rathmell, A. R.; Charbonneau, P.; Li, Z.; Wiley, B. J. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 2012, 4, 1996–2004.CrossRefGoogle Scholar
  31. [31]
    Groep, J.; Spinelli, P.; Polman, A. Transparent conducting silver nanowire networks. Nano Lett. 2012, 12, 3138–3144.CrossRefGoogle Scholar
  32. [32]
    Kottmann, J. P.; Martin, O. J. F.; Smith, D. R.; Schultz, S. Plasmon resonances of silver nanowires with a nonregular cross section. Phys. Rev. B 2001, 64, 235402CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Teppei Araki
    • 1
  • Jinting Jiu
    • 2
  • Masaya Nogi
    • 2
  • Hirotaka Koga
    • 2
  • Shijo Nagao
    • 2
  • Tohru Sugahara
    • 2
  • Katsuaki Suganuma
    • 2
  1. 1.Graduate School of EngineeringOsaka UniversityIbaraki, OsakaJapan
  2. 2.Institute of Scientific and Industrial ResearchOsaka UniversityIbaraki, OsakaJapan

Personalised recommendations