Advertisement

Nano Research

, Volume 6, Issue 4, pp 275–285 | Cite as

Uniform wurtzite MnSe nanocrystals with surface-dependent magnetic behavior

  • Jie Zhang
  • Fan Zhang
  • Xuebing Zhao
  • Xinran Wang
  • Lifeng Yin
  • Chongyun Liang
  • Min Wang
  • Ying Li
  • Jiwei Liu
  • Qingsong Wu
  • Renchao CheEmail author
Article

Abstract

Manganese selenide (MnSe) possesses unique magnetic properties as an important magnetic semiconductor, but the synthesis and properties of MnSe nanocrystals are less developed compared to other semiconductor nanocrystals because of the inability to obtain high-quality MnSe, especially in the metastable wurtzite structure. Here, we have successfully fabricated wurtzite MnSe nanocrystals via a colloidal approach which affords uniform crystal sizes and tailored shapes. The selective binding strength of the amine surfactant is the determining factor in shape-control and shape-evolution. Bullet-shapes could be transformed into shuttle-shapes if part of the oleylamine in the reaction solution was replaced by trioctylamine, and tetrapod-shaped nanocrystals could be formed in trioctylamine systems. The three-dimensional (3D) structure of the bullet-shaped nanorods has been demonstrated by the advanced transmission electron microscope (TEM) 3D-tomography technology. High-resolution TEM (HRTEM) and electron energy-loss spectroscopy (EELS) show that planar-defect structures such as stacking faults and twinning along the [001] direction arise during the growth of bullet-shapes. On the basis of careful HRTEM observations, we propose a “quadra-twin core” growth mechanism for the formation of wurtzite MnSe nanotetrapods. Furthermore, the wurtzite MnSe nanocrystals show lowtemperature surface spin-glass behavior due to their noncompensated surface spins and the blocking temperatures increase from 8.4 K to 18.5 K with increasing surface area/volume ratio of the nanocrystals. Our results provide a systematic study of wurtzite MnSe nanocrystals.

Keywords

chalcogens magnetic properties nanocrystals transmission electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_305_MOESM1_ESM.pdf (730 kb)
Supplementary material, approximately 727 KB.

Supplementary material, approximately 1.44 MB.

Supplementary material, approximately 1.75 MB.

References

  1. [1]
    Mitchell, K.; Ibers, J. A. Rare-earth transition-metal chalcogenides. Chem. Rev. 2002, 102, 1929–1952.CrossRefGoogle Scholar
  2. [2]
    Kwon, S. G.; Hyeon, T. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc. Chem. Res. 2008, 41, 1696–1709.CrossRefGoogle Scholar
  3. [3]
    Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem. Int. Ed. 2011, 50, 11093–11097.CrossRefGoogle Scholar
  4. [4]
    Giebultowicz, T. M.; Samarth, N.; Luo, H.; Furdyna, J. K.; Klosowski, P.; Rhyne, J. J. Strain-engineered incommensurability in epitaxial Heisenberg antiferromagnets. Phys. Rev. B 1992, 46, 12076–12079.CrossRefGoogle Scholar
  5. [5]
    Goede, O.; Heimbrodt, W. Optical properties of (Zn, Mn) and (Cd, Mn) chalcogenide mixed crystals and superlattices. Phys. Stat. Solidi B 1988, 146, 11–62.CrossRefGoogle Scholar
  6. [6]
    Furdyna, J. K. Diluted magnetic semiconductors. J. Appl. Phys. 1988, 64, R29–R64.CrossRefGoogle Scholar
  7. [7]
    Peng, Q.; Dong, Y. J.; Deng, Z. X.; Kou, H. Z.; Gao, S.; Li, Y. D. Selective synthesis and magnetic properties of α-MnSe and MnSe2 uniform microcrystals. J. Phys. Chem. B 2002, 106, 9261–9265.CrossRefGoogle Scholar
  8. [8]
    Norris, D. J.; Yao, N.; Charnock, F. T.; Kennedy, T. A. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 2001, 1, 3–7.CrossRefGoogle Scholar
  9. [9]
    Levy, L.; Feltin, N.; Ingert, D.; Pileni, M. P. Three dimension- ally diluted magnetic semiconductor clusters Cd1-yMnyS with a range of sizes and compositions: Dependence of spectroscopic properties on the synthesis mode. J. Phys. Chem. B 1997, 101, 9153–9160.CrossRefGoogle Scholar
  10. [10]
    Suyver, J. F.; Wuister, S. F.; Kelly, J. J.; Meijerink, A. Synthesis and photoluminescence of nanocrystalline ZnS:Mn2+. Nano Lett. 2001, 1, 429–433.CrossRefGoogle Scholar
  11. [11]
    Schlesinger, M. E. The Mn-Se (manganese-selenium) system. J. Phase Equilib. 1998, 19, 588–590.CrossRefGoogle Scholar
  12. [12]
    Lindsay, R. Magnetic susceptibility of manganese selenide. Phys. Rev. 1951, 84, 569–571.CrossRefGoogle Scholar
  13. [13]
    Thanigaimani, V.; Angahi, M. A. Optical properties of MnSe thin films. Thin Solid Films 1994, 245, 146–151.CrossRefGoogle Scholar
  14. [14]
    Wu, M. Z.; Xiong, Y.; Jiang, N.; Ning, M.; Chen, Q. W. Hydrothermal preparation of α-MnSe and MnSe2 nanorods. J. Cryst. Growth 2004, 262, 567–571.CrossRefGoogle Scholar
  15. [15]
    Qin, T.; Lu, J.; Wei, S.; Qi, P. F.; Peng, Y. Y.; Yang, Z. P.; Qian, Y. T. α-MnSe crystallites though solvothermal reaction in ethylenediamine. Inorg. Chem. Commun. 2002, 5, 369–371.CrossRefGoogle Scholar
  16. [16]
    Wang, L. C.; Chen, L. Y.; Luo, T.; Bao, K. Y.; Qian, Y. T. A facile method to the cube-like MnSe2 microcrystallines via a hydrothermal process. Solid State Commun. 2006, 138, 72–75.CrossRefGoogle Scholar
  17. [17]
    Liu, X. D.; Ma, J. M.; Peng, P.; Zheng, W. J. Hydrothermal synthesis of cubic MnSe2 and octahedral α-MnSe microcrystals. J. Cryst. Growth 2009, 311, 1359–1363.CrossRefGoogle Scholar
  18. [18]
    Kolodziejski, L. A.; Gunshor, R. L.; Otsuka, N.; Gu, B. P.; Hefetz, Y.; Nurmikko, A. V. Two-dimensional metastable magnetic semiconductor structures. Appl. Phys. Lett. 1986, 48, 1482–1484.CrossRefGoogle Scholar
  19. [19]
    Murray, R. M.; Forbes, B. C.; Heyding, R. D. The preparation and paramagnetic susceptibility of β-MnSe. Can. J. Chem. 1972, 50, 4059–4061.CrossRefGoogle Scholar
  20. [20]
    Sines, I. T.; Misra, R.; Schiffer, P.; Schaak, R. E. Colloidal synthesis of non-equilibrium wurtzite-type MnSe. Angew. Chem. Int. Ed. 2010, 49, 4638–4640.CrossRefGoogle Scholar
  21. [21]
    Yang, X. Y.; Wang, Y. N.; Sui, Y. M.; Huang, X. L.; Cui, T.; Wang, C. Z.; Liu, B. B.; Zou, G. T.; Zou, B. Morphology-controlled synthesis of anisotropic wurtzite MnSe nanocrystals: Optical and magnetic properties. Cryst. Eng. Comm. 2012, 14, 6916–6920.CrossRefGoogle Scholar
  22. [22]
    Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S.-E. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 2001, 13, 4395–4398.CrossRefGoogle Scholar
  23. [23]
    Manna, L.; Scher, E. C.; Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122, 12700–12706.CrossRefGoogle Scholar
  24. [24]
    Peng, Z. A.; Peng, X. Nearly monodisperse and shape- controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124, 3343–3353.CrossRefGoogle Scholar
  25. [25]
    Wang, Z. L.; Kong, X. Y.; Zuo, J. M. Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 2003, 91, 185502.CrossRefGoogle Scholar
  26. [26]
    Gautam, U. K.; Panchakarla, L. S.; Dierre, B.; Fang, X. S.; Bando, Y.; Sekiguchi, T.; Govindaraj, A.; Golberg, D.; Rao, C. N. R. Solvothermal synthesis, cathodoluminescence, and field-emission properties of pure and N-doped ZnO nanobullets. Adv. Funct. Mater. 2009, 19, 131–140.CrossRefGoogle Scholar
  27. [27]
    Ding, Y.; Ma, C.; Wang, Z. L. Self-catalysis and phase transformation in the formation of CdSe nanosaws. Adv. Mater. 2004, 16, 1740–1743.CrossRefGoogle Scholar
  28. [28]
    Ma, C.; Wang, Z. L. Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws-a step towards nanomanufacturing. Adv. Mater. 2005, 17, 2635–2639.CrossRefGoogle Scholar
  29. [29]
    Manna, L.; Scher, E. C.; Alivisatos, A. P. Shape control of colloidal semiconductor nanocrystals. J. Cluster Sci. 2002, 13, 521–532.CrossRefGoogle Scholar
  30. [30]
    Jun, Y.-W.; Lee, S.-M.; Kang, N.-J.; Cheon, J. Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. J. Am. Chem. Soc. 2001, 123, 5150–5151.CrossRefGoogle Scholar
  31. [31]
    Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.CrossRefGoogle Scholar
  32. [32]
    Chen, M.; Xie, Y.; Lu, J.; Xiong, Y. J.; Zhang, S. Y.; Qian, Y. T.; Liu, X. M. Synthesis of rod-, twinrod-, and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallization technique. J. Mater. Chem. 2002, 12, 748–753.CrossRefGoogle Scholar
  33. [33]
    Yu, W. W.; Wang, Y. A.; Peng, X. G. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals. Chem. Mater. 2003, 15, 4300–4308.CrossRefGoogle Scholar
  34. [34]
    Carbone, L.; Kudera, S.; Carlino, E.; Parak, W. J.; Giannini, C.; Cingolani, R.; Manna, L. Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid. J. Am. Chem. Soc. 2006, 128, 748–755.CrossRefGoogle Scholar
  35. [35]
    Iwanaga, H.; Fujii, M.; Takeuchi, S. Growth model of tetrapod zinc oxide particles. J. Cryst. Growth 1993, 134, 275–280.CrossRefGoogle Scholar
  36. [36]
    Hu, J. Q.; Bando, Y.; Golberg, D. Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures. Small 2005, 1, 95–99.CrossRefGoogle Scholar
  37. [37]
    Dai, Y.; Mu, X. L.; Tan, Y. M.; Lin, K. Q.; Yang, Z. L.; Zheng, N. F.; Fu, G. Carbon monoxide-assisted synthesis of single-crystalline Pd tetrapod nanocrystals through hydride formation. J. Am. Chem. Soc. 2012, 134, 7073–7080.CrossRefGoogle Scholar
  38. [38]
    Kanaras, A. G.; Sönnichsen, C.; Liu, H.; Alivisatos, A. P. Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures. Nano Lett. 2005, 5, 2164–2167.CrossRefGoogle Scholar
  39. [39]
    Lee, G. H.; Huh, S. H.; Jeong, J. W.; Choi, B. J.; Kim, S. H.; Ri, H. C. Anomalous magnetic properties of MnO nanoclusters. J. Am. Chem. Soc. 2002, 124, 12094–12095.CrossRefGoogle Scholar
  40. [40]
    Puglisi, A.; Mondini, S.; Cenedese, S.; Ferretti, A. M.; Santo, N.; Ponti, A. Monodisperse octahedral α-MnS and MnO nanoparticles by the decomposition of manganese oleate in the presence of sulfur. Chem. Mater. 2010, 22, 2804–2813.CrossRefGoogle Scholar
  41. [41]
    Xu, M. H.; Zhong, W.; Yu, J. Y.; Zang, W. C.; Au, C.; Yang, Z. X.; Lv, L. Y.; Du, Y. W. Exchange-bias-like behavior from disordered surface spins in Li4Mn5O12 nanosticks. J. Phys. Chem. C 2010, 114, 16143–16147.CrossRefGoogle Scholar
  42. [42]
    Díaz-Guerra, C.; Vila, M.; Piqueras, J. Exchange bias in single-crystalline CuO nanowires. Appl. Phys. Lett. 2010, 96, 193105.CrossRefGoogle Scholar
  43. [43]
    Seo, W. S.; Jo, H. H.; Lee, K.; Kim, B.; Oh, S. J.; Park, J. T. Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew. Chem. Int. Ed. 2004, 43, 1115–1117.CrossRefGoogle Scholar
  44. [44]
    Schladt, T. D.; Graf, T.; Tremel, W. Synthesis and characterization of monodisperse manganese oxide nanoparticles-evaluation of the nucleation and growth mechanism. Chem. Mater. 2009, 21, 3183–3190.CrossRefGoogle Scholar
  45. [45]
    Tian, Q. W.; Tang, M. H.; Jiang, F. R.; Liu, Y. W.; Wu, J. H.; Zou, R. J.; Sun, Y. G.; Chen, Z. G.; Li, R. W.; Hu, J. Q. Large-scaled star-shaped α-MnS nanocrystals with novel magnetic properties. Chem. Commun. 2011, 47, 8100–8102.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jie Zhang
    • 1
  • Fan Zhang
    • 2
  • Xuebing Zhao
    • 1
  • Xinran Wang
    • 3
  • Lifeng Yin
    • 4
  • Chongyun Liang
    • 2
  • Min Wang
    • 1
  • Ying Li
    • 1
  • Jiwei Liu
    • 1
  • Qingsong Wu
    • 1
  • Renchao Che
    • 1
    Email author
  1. 1.Department of Materials Science and Laboratory of Advanced MaterialsFudan UniversityShanghaiChina
  2. 2.Department of ChemistryFudan UniversityShanghaiChina
  3. 3.National Laboratory of Microstructures, School of Electronic Science and EngineeringNanjing UniversityNanjingChina
  4. 4.Department of PhysicsFudan UniversityShanghaiChina

Personalised recommendations