Nano Research

, Volume 6, Issue 4, pp 253–262 | Cite as

Deriving the three-dimensional structure of ZnO nanowires/nanobelts by scanning transmission electron microscope tomography

  • Yong Ding
  • Fang Zhang
  • Zhong Lin WangEmail author
Research Article


Characterizing the three-dimensional (3D) shape of a nanostructure by conventional imaging techniques in scanning electron microscopy and transmission electron microscopy can be limited or complicated by various factors, such as two-dimensional (2D) projection, diffraction contrast and unsure orientation of the nanostructure with respect to the electron beam direction. In this paper, in conjunction with electron diffraction and imaging, the 3D morphologies of ZnO nanowires and nanobelts synthesized via vapor deposition were reconstructed by electron tomography in a scanning transmission electron microscope (STEM). The cross-sections of these one-dimensional (1D) nanostructures include triangle, hexagonal, and rectangle shapes. By combining the reconstructed shape with the crystalline information supplied by electron diffraction patterns recorded from the same nanowire/nanobelt, the growth direction and its exposed surfaces were uniquely identified. In total, three different growth directions were confirmed. These directions are 〈0001〉, 〈2\( \bar 1 \) \( \bar 1 \)0〉 and 〈2\( \bar 1 \) \( \bar 1 \)3〉 corresponding to 〈001〉, 〈100〉 and 〈101〉 orientations in three-index notation. The 〈0001〉 growth nanowires show triangle or hexagonal cross-sections, with exposed {01\( \bar 1 \)0} side surfaces. The dominant surfaces of the 〈2\( \bar 1 \) \( \bar 1 \)0〉 growth nanobelt are ±(0001) planes. Both hexagonal and rectangle cross-sections were observed in the 〈2\( \bar 1 \) \( \bar 1 \)3〉 growth ZnO nanostructures. Their surfaces include the {01\( \bar 1 \)0}, {\( \bar 1 \)101} and {\( \bar 2 \)112} planes. The nanobelts with a large aspect ratio of ∼10 normally grow along the 〈2\( \bar 1 \) \( \bar 1 \)0〉 direction, while nanobelts with small aspect ratio grow along 〈2\( \bar 1 \) \( \bar 1 \)3〉 growth direction. The approach and methodology demonstrated here can be extended to any nanostructures that can be crystalline, polycrystalline or even amorphous.

Graphical abstract


ZnO nanowire nanobelt TEM STEM electron tomography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Supplementary material, approximately 9.12 MB.

Supplementary material, approximately 9.12 MB.

Supplementary material, approximately 9.12 MB.

Supplementary material, approximately 9.12 MB.

Supplementary material, approximately 9.12 MB.


  1. [1]
    Käelblein, D.; Weitz, R. T.; Böttcher, H. J.; Ante, F.; Zschieschang, U.; Kern, K.; Klauk, H. Top-ghate ZnO nanowire transistors and integrated circuits with ultrathin self-assembled monolayer gate dielectric. Nano Lett. 2011, 11, 5309–5315.CrossRefGoogle Scholar
  2. [2]
    Sohn, J. I.; Choi, S. S.; Morris, S. M.; Bendall, J. S.; Coles, H. J.; Hong, W.-K.; Jo, G.; Lee, T.; Welland, M. E. Novel nonvolatile memory with multibit storage based on a ZnO nanowire transistor. Nano Lett. 2010, 10, 4316–4320.CrossRefGoogle Scholar
  3. [3]
    Chen, M. T.; Lu, M. P.; Wu, Y. J.; Song, J. H.; Lee, C. Y.; Lu, M. Y.; Chang, Y. C.; Chou, L. J.; Wang, Z. L.; Chen, L. J. Near UV LEDs made with in situ doped p-n homojunction ZnO nanowire arrays. Nano Lett. 2010, 10, 4387–4393.CrossRefGoogle Scholar
  4. [4]
    Lai, E.; Kim, W.; Yang, P. D. Vertical nanowire array-based light emitting diodes. Nano Res. 2008, 1, 123–128.CrossRefGoogle Scholar
  5. [5]
    Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z. W.; Wang, Z. L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 2002, 81, 1869–1871.CrossRefGoogle Scholar
  6. [6]
    Fei, P.; Yeh, P.-H.; Zhou, J.; Xu, S.; Gao, Y. F.; Song, J. H.; Gu, Y. D.; Huang, Y. Y.; Wang, Z. L. Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire. Nano Lett. 2009, 9, 3435–3439.CrossRefGoogle Scholar
  7. [7]
    Wang, X. D.; Zhou, J.; Song, J. H.; Liu, J.; Xu, N. S.; Wang, Z. L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 2006, 6, 2768–2772.CrossRefGoogle Scholar
  8. [8]
    Zhou, J.; Fei, P.; Gu, Y. D.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Piezoelectric-potential-control led polarity-reversible Schottky diodes and switches of ZnO wires. Nano Lett. 2008, 8, 3973–3977.CrossRefGoogle Scholar
  9. [9]
    Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.CrossRefGoogle Scholar
  10. [10]
    Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.CrossRefGoogle Scholar
  11. [11]
    Wang, Z. L. Piezotronic and piezophototronic effects. J. Phys. Chem. Lett. 2010, 1, 1388–1393.CrossRefGoogle Scholar
  12. [12]
    Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Flexible piezotronic strain sensor. Nano Lett. 2008, 8, 3035–3040.CrossRefGoogle Scholar
  13. [13]
    Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.CrossRefGoogle Scholar
  14. [14]
    Huang, M. H.; Wu, Y. Y.; Feick, H. N.; Tran, N.; Weber, E.; Yang, P. D. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 2001, 13, 113–116.CrossRefGoogle Scholar
  15. [15]
    Xu, S.; Ding, Y.; Wei, Y. G.; Fang, H.; Shen, Y.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Patterned growth of horizontal ZnO nanowire arrays. J. Am. Chem. Soc. 2009, 131, 6670–6671.CrossRefGoogle Scholar
  16. [16]
    Xu, S.; Wei, Y. G.; Kirkham, M.; Liu, J.; Mai, W. J.; Davidovic, D.; Snyder, R. L.; Wang, Z. L. Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. J. Am. Chem. Soc. 2008, 130, 14958–14959.CrossRefGoogle Scholar
  17. [17]
    Yang, R. S.; Ding, Y.; Wang, Z. L. Deformation-free single-crystal nanohelixes of polar nanowires. Nano Lett. 2004, 4, 1309–1312.CrossRefGoogle Scholar
  18. [18]
    Wang, Z. L. Piezoelectric nanostructures: From growth phenomena to electric nanogenerators. MRS Bull. 2007, 32, 109–116.CrossRefGoogle Scholar
  19. [19]
    Wang, Z. L. Energy harvesting using piezoelectric nanowires—A correspondence on “Energy harvesting using nanowires?” by Alexe et al. Adv. Mater. 2009, 21, 1311–1315.CrossRefGoogle Scholar
  20. [20]
    Ding, Y.; Wang, Z. L. Structure analysis of nanowires and nanobelts by transmission electron microscopy. J. Phys. Chem. B 2004, 108, 12280–12291.CrossRefGoogle Scholar
  21. [21]
    Pennycook, S. J.; Nellist, P. D., Scanning Transmission Electron Microscopy Imaging and Analysis. Springer: New York, 2011.CrossRefGoogle Scholar
  22. [22]
    Koguchi, M.; Kakibayashi, H.; Tsuneta, R.; Yamaoka, M.; Niino, T.; Tanaka, N.; Kase, K.; Iwaki, M. Three-dimensional STEM for observing nanostructures. J. Electron Microsc. 2001, 50, 235–241.Google Scholar
  23. [23]
    Weyland, M. Electron tomography of catalysts. Top. Catal. 2002, 21, 175–183.CrossRefGoogle Scholar
  24. [24]
    De Rosier, D. J.; Klug, A. Reconstruction of three dimensional structures from electron micrographs. Nature 1968, 217, 130–134.CrossRefGoogle Scholar
  25. [25]
    Ortalan, V.; Herrera, M.; Morgan, D. G.; Browning, N. D. Application of image processing to STEM tomography of low-contrast materials. Ultramicroscopy 2009, 110, 67–81.CrossRefGoogle Scholar
  26. [26]
    Möbus, G.; Inkson, B. J. Nanoscale tomography in materials science. Mater. Today 2007, 10, 18–25.CrossRefGoogle Scholar
  27. [27]
    Sueda, S.; Yoshida, K.; Tanaka, N. Quantification of metallic nanoparticle morphology on TiO2 using HAADF-STEM tomography. Ultramicroscopy 2010, 110, 1120–1127.CrossRefGoogle Scholar
  28. [28]
    Hernändez-Garrido, J. C.; Yoshida, K.; Gai, P. L.; Boyes, E. D.; Christensen, C. H.; Midgley, P. A. The location of gold nanoparticles on titania: A study by high resolution aberration-corrected electron microscopy and 3D electron tomography. Catal. Today 2011, 160, 165–169.CrossRefGoogle Scholar
  29. [29]
    Gontard, L. C.; Jinschek, J. R.; Ou, H. Y.; Verbeeck, J.; Dunin-Borkowski, R. E. Three-dimensional fabrication and characterisation of core-shell nano-columns using electron beam patterning of Ge-doped SiO2. Appl. Phys. Lett. 2012, 100, 263113.CrossRefGoogle Scholar
  30. [30]
    Sato, K.; Aoyagi, K.; Konno, T. J. Three-dimensional shapes and distribution of FePd nanoparticles observed by electron tomography using high-angle annular dark-field scanning transmission electron microscopy. J. Appl. Phys. 2010, 107, 024304.CrossRefGoogle Scholar
  31. [31]
    Gontard, L. C.; Dunin-Borkowski, R. E.; Ozkaya, D. Three-dimensional shapes and spatial distributions of Pt and PtCr catalyst nanoparticles on carbon black. J. Microsc. 2008, 232, 248–259.CrossRefGoogle Scholar
  32. [32]
    Chung, S.-Y.; Kim, J.-G.; Kim, Y.-M.; Lee, Y.-B. Three-dimensional morphology of iron phosphide phases in a polycrystalline LiFePO4 matrix. Adv. Mater. 2011, 23, 1398–1403.CrossRefGoogle Scholar
  33. [33]
    Gontard, L. C.; Dunin-Borkowski, R. E.; Gass, M. H.; Bleloch, A. L.; Ozkaya, D. Three-dimensional shapes and structures of lamellar-twinned fcc nanoparticles using ADF STEM. J. Electron Microsc. 2009, 58, 167–174.CrossRefGoogle Scholar
  34. [34]
    Yoshida, K.; Ikuhara, Y. H.; Takahashi, S.; Hirayama, T.; Saito, T.; Sueda, S.; Tanaka, N.; Gai, P. L. The three-dimensional morphology of nickel nanodots in amorphous silica and their role in high-temperature permselectivity for hydrogen separation. Nanotechnology 2009, 20, 315703.CrossRefGoogle Scholar
  35. [35]
    Benlekbir, S.; Epicier, T.; Bausach, M.; Aouine, M.; Berhault, G. STEM HAADF electron tomography of palladium nanoparticles with complex shapes. Phil. Mag. Lett. 2009, 89, 145–153.CrossRefGoogle Scholar
  36. [36]
    Hungria, A. B.; Eder, D.; Windle, A. H.; Midgley, P. A. Visualization of the three-dimensional microstructure of TiO2 nanotubes by electron tomography. Catal. Today 2009, 143, 225–229.CrossRefGoogle Scholar
  37. [37]
    Pennington, R. S.; Konig, S.; Alpers, A.; Boothroyd, C. B.; Dunin-Borkowski, R. E. Reconstruction of an InAs nanowire using geometric and algebraic tomography. In 17th International Conference on Microscopy of Semiconducting Materials 2011, Cambridge, England, 2011, 012045.Google Scholar
  38. [38]
    Verheijen, M. A.; Algra, R. E.; Börgstrom, M. T.; Immink, G.; Sourty, E.; van Enckevort, W. J. P.; Vlieg, E.; Bakkers, E. P. A. M. Three-dimensional morphology of GaP-GaAs nanowires revealed by transmission electron microscopy tomography. Nano Lett. 2007, 7, 3051–3055.CrossRefGoogle Scholar
  39. [39]
    Kremer, J. R.; Mastronarde, D. N.; McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 1996, 116, 71–76.CrossRefGoogle Scholar
  40. [40]
    Ding, Y.; Wang, Z. L. Profile imaging of reconstructed polar and non-polar surfaces of ZnO. Surf. Sci. 2007, 601, 425–433.CrossRefGoogle Scholar
  41. [41]
    Gao, P. X.; Ding, Y.; Wang, Z. L. Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst. Nano Lett. 2003, 3, 1315–1320.CrossRefGoogle Scholar
  42. [42]
    Zhang, J. M.; Zhang, X. Z.; Chen, L.; Xu, J.; You, L. P.; Ye, H. Q.; Yu, D. P. In situ study of the growth of ZnO nanosheets using environmental scanning electron microscope. Appl. Phys. Lett. 2007, 90, 233104.CrossRefGoogle Scholar
  43. [43]
    Wei, Y. G.; Ding, Y.; Li, C.; Xu, S.; Ryo, J. H.; Dupuis, R.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Growth of vertically aligned ZnO nanobelt arrays on GaN substrate. J. Phys. Chem. C 2008, 112, 18935–18937.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina

Personalised recommendations