Nano Research

, Volume 5, Issue 12, pp 833–844 | Cite as

Repair and stabilization in confined nanoscale systems — inorganic nanowires within single-walled carbon nanotubes

  • Adelina IlieEmail author
  • Simon Crampin
  • Lisa Karlsson
  • Mark Wilson
Research Article


Repair is ubiquitous in biological systems, but rare in the inorganic world. We show that inorganic nanoscale systems can however possess remarkable repair and reconfiguring capabilities when subjected to extreme confinement. Confined crystallization inside single-walled carbon nanotube (SWCNT) templates is known to produce the narrowest inorganic nanowires, but little is known about the potential for repair of such nanowires once crystallized, and what can drive it. Here inorganic nanowires encapsulated within SWCNTs were seen by high-resolution transmission electron microscopy to adjust to changes in their nanotube template through atomic rearrangement at room temperature. These observations highlight nanowire repair processes, supported by theoretical modeling, that are consistent with atomic migration at fractured, ionic ends of the nanowires encouraged by long-range force fields, as well as release-blocking mechanisms where nanowire atoms bind to nanotube walls to stabilize the ruptured nanotube and allow the nanowire to reform. Such principles can inform the design of nanoscale systems with enhanced resilience.


Filled carbon nanotubes nanowires repair high-resolution transmission electron microscopy (HRTEM) density functional theory molecular dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_267_MOESM1_ESM.pdf (768 kb)
Supplementary material, approximately 773 KB.

Supplementary material, approximately 5.87 MB.


  1. [1]
    Meyer, R. R.; Sloan, J.; Dunin-Borkowski, R. E.; Kirkland, A. I.; Novotny, M. C.; Bailey, S. R.; Hutchison, J. L.; Green, M. L. H. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 2000, 289, 1324–1326.CrossRefGoogle Scholar
  2. [2]
    Ilie, A.; Bendall, J. S.; Nagaoka, K.; Egger, S.; Nakayama, T.; Crampin, S. Encapsulated inorganic nanostructures; A route to sizable modulated, noncovalent, on-tube potentials in carbon nanotubes. ACS Nano 2011, 5, 2559–2569.CrossRefGoogle Scholar
  3. [3]
    Bishop, C. L.; Wilson, M. The filling of flexible carbon nanotubes by molten salts. J. Mater. Chem. 2009, 19, 2929–2939.CrossRefGoogle Scholar
  4. [4]
    Chamberlain, T. W.; Meyer, J. C.; Biskupek, J.; Leschner, J.; Santana, A.; Besley, N. A.; Bichoutskaia, E.; Kaiser, U.; Khlobystov, A. N. Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale. Nat. Chem. 2011, 3, 732–737.CrossRefGoogle Scholar
  5. [5]
    Chen, W.; Pan, X. L.; Willinger, M. -G.; Su, D. S.; Bao, X. H. Facile autoreduction of iron oxide/carbon nanotube encapsulates. J. Am. Chem. Soc. 2006, 128, 3136–3137.CrossRefGoogle Scholar
  6. [6]
    Zoberbier, T.; Chamberlain, T. W.; Biskupek, J.; Kuganathan, N.; Eyhusen, S.; Bichoutskaia, E.; Kaiser, U.; Khlobystov, A. N. Interactions and reactions of transition metal clusters with the interior of single-walled carbon nanotubes imaged at the atomic scale. J. Am. Chem. Soc. 2012, 134, 3073–3079.CrossRefGoogle Scholar
  7. [7]
    Börrnert, F.; Gorantla, S.; Bachmatiuk, A.; Warner, J. H.; Ibrahim, I.; Thomas, J.; Gemming, T.; Eckert, J.; Cuniberti, G.; Büchner, B., et al. In situ observations of self-repairing single-walled carbon nanotubes. Phys. Rev. B 2010, 81, 201401.CrossRefGoogle Scholar
  8. [8]
    Suenaga, K.; Wakabayashi, H.; Koshino, M.; Sato, Y.; Urita, K.; Iijima, S. Imaging active topological defects in carbon nanotubes. Nat. Nanotechnol. 2007, 2, 358–360.CrossRefGoogle Scholar
  9. [9]
    Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 2004, 430, 870–873.CrossRefGoogle Scholar
  10. [10]
    Ding, F.; Jiao, K.; Wu, M. Q.; Yakobson, B. I. Pseudoclimb and dislocation dynamics in superplastic nanotubes. Phys. Rev. Lett. 2007, 98, 075503.CrossRefGoogle Scholar
  11. [11]
    Kotakoski, J.; Krasheninnikov, A. V.; Nordlund, K. Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes; Atomistic simulations. Phys. Rev. B 2006, 74, 245420.CrossRefGoogle Scholar
  12. [12]
    Warner, J. H.; Schäffel, F.; Zhong, G. F.; Rümmeli, M. H.; Buchner, B.; Robertson, J.; Briggs, G. A. D. Investigating the diameter-dependent stability of single-walled carbon nanotubes. ACS Nano 2009, 3, 1557–1563.CrossRefGoogle Scholar
  13. [13]
    Bendall, J. S.; Ilie, A.; Welland, M. E.; Sloan, J.; Green, M. L. H. Thermal stability and reactivity of metal halide filled single-walled carbon nanotubes. J. Phys. Chem. B 2006, 110, 6569–6573.CrossRefGoogle Scholar
  14. [14]
    Guan, L. H.; Suenaga, K.; Shi, Z. J.; Gu, Z. N.; Iijima, S. Polymorphic structures of iodine and their phase transition in confined nanospace. Nano Lett. 2007, 7, 1532–1535.CrossRefGoogle Scholar
  15. [15]
    Smith, B. W.; Luzzi, D. E. Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 2001, 90, 3509–3515.CrossRefGoogle Scholar
  16. [16]
    Kobayashi, K.; Suenaga, K.; Saito, T.; Shinohara, H.; Iijima, S. Photoreactivity preservation of AgBr nanowires in confined nanospaces. Adv. Mater. 2010, 22, 3156–3160.CrossRefGoogle Scholar
  17. [17]
    Banhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 1999, 62, 1181–1221.CrossRefGoogle Scholar
  18. [18]
    Costa, P. M. F. J.; Golberg, D.; Mitome, M.; Hampel, S.; Leonhardt, A.; Buchner, B.; Bando, Y. Stepwise current-driven release of attogram quantities of copper iodide encapsulated in carbon nanotubes. Nano Lett. 2008, 8, 3120–3125.CrossRefGoogle Scholar
  19. [19]
    Baldoni, M.; Leoni, S.; Sgamellotti, A.; Seifert, G.; Mercuri, F. Formation, structure, and polymorphism of novel lowest-dimensional AgI nanoaggregates by encapsulation in carbon nanotubes. Small 2007, 3, 1730–1734.CrossRefGoogle Scholar
  20. [20]
    Gan, Y. J.; Sun, L. T.; Banhart, F. One- and two-dimensional diffusion of metal atoms in graphene. Small 2008, 4, 587–591.CrossRefGoogle Scholar
  21. [21]
    Krasheninnikov, A. V.; Lehtinen, P. O.; Foster, A. S.; Pyykkö, P.; Nieminen, R. M. Embedding transition-metal atoms in graphene; Structure, bonding, and magnetism. Phys. Rev. Lett. 2009, 102, 126807.CrossRefGoogle Scholar
  22. [22]
    Warner, J. H.; Ito, Y.; Rümmeli, M. H.; Büchner, B.; Shinohara, H.; Briggs, G. A. D. Capturing the motion of molecular nanomaterials encapsulated within carbon nano-tubes with ultrahigh temporal resolution. ACS Nano 2009, 3, 3037–3044.CrossRefGoogle Scholar
  23. [23]
    Koshino, M.; Solin, N.; Tanaka, T.; Isobe, H.; Nakamura, E. Imaging the passage of a single hydrocarbon chain through a nanopore. Nat. Nanotechnol. 2008, 3, 595–597.CrossRefGoogle Scholar
  24. [24]
    Rodriguez-Manzo, J. A.; Cretu, O.; Banhart, F. Trapping of metal atoms in vacancies of carbon nanotubes and graphene. ACS Nano 2010, 4, 3422–3428.CrossRefGoogle Scholar
  25. [25]
    Ilie, A.; Egger, S.; Friedrichs, S.; Kang, D. J.; Green, M. L. H. Correlated transport and high resolution transmission electron microscopy investigations on inorganic-filled single-walled carbon nanotubes showing negative differential resistance. Appl. Phys. Lett. 2007, 91, 253124.CrossRefGoogle Scholar
  26. [26]
    Zobelli, A.; Gloter, A.; Ewels, C. P.; Colliex, C. Shaping single walled nanotubes with an electron beam. Phys. Rev. B 2008, 77, 045410.CrossRefGoogle Scholar
  27. [27]
    Rodriguez-Manzo, J. A.; Banhart, F. Creation of individual vacancies in carbon nanotubes by using an electron beam of 1 Å diameter. Nano Lett. 2009, 9, 2285–2289.CrossRefGoogle Scholar
  28. [28]
    Sloan, J.; Wright, D. M.; Woo, H. G.; Bailey, S.; Brown, G.; York, A. P. E.; Coleman, K. S.; Hutchison, J. L.; Green, M. L. H. Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem. Commun. 1999, 699–700.Google Scholar
  29. [29]
    CrystalMaker, 2.0; CrystalMaker Software; Oxford, 2006.Google Scholar
  30. [30]
    Stadelmann, P. JEMS, Interdisciplinary Centre for Electron Microscopy; EPFL, 2010.Google Scholar
  31. [31]
    Gömez-Rodríguez, A.; Beltrán-del-Río, L. M.; Herrera-Becerra, R. Simula TEM; Multislice simulations for general objects. Ultramicroscopy 2010, 110, 95–104.CrossRefGoogle Scholar
  32. [32]
    Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567–570.CrossRefGoogle Scholar
  33. [33]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  34. [34]
    Hull, S.; Keen, D. A. Pressure-induced phase transitions in AgCl, AgBr, and AgI. Phys. Rev. B 1999, 59, 750–761.CrossRefGoogle Scholar
  35. [35]
    Parrinello, M.; Rahman, A.; Vashishta, P. Structural transitions in superionic conductors. Phys. Rev. Lett. 1983, 50, 1073–1076.CrossRefGoogle Scholar
  36. [36]
    Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 1988, 37, 6991–7000.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Adelina Ilie
    • 1
    Email author
  • Simon Crampin
    • 1
  • Lisa Karlsson
    • 2
  • Mark Wilson
    • 3
  1. 1.Department of Physics & Centre for Graphene ScienceUniversity of BathBathUK
  2. 2.Department of MaterialsUniversity of OxfordOxfordUK
  3. 3.Department of Chemistry, Physical and Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations