Advertisement

Archives of Pharmacal Research

, Volume 42, Issue 7, pp 617–628 | Cite as

Phosphatidylserine receptor-targeting therapies for the treatment of cancer

  • Miso Park
  • Keon Wook KangEmail author
Review
  • 91 Downloads

Abstract

Asymmetric distribution of phospholipids across the plasma membrane is a unique characteristic of eukaryotic cells. Phosphatidylcholine and sphingomyelin are exposed in the outer leaflet, and phosphatidylserine (PS) is predominantly located in the inner leaflet. Redistribution of PS to the cell surface can be observed in several physiological conditions, such as apoptosis and platelet activation, or in pathological conditions, such as the release of microvesicles/exosomes from tumor tissues. PS binding to the phosphatidylserine receptor (PSR) on immune cells initiates immunosuppressive pathways that can lead to immune evasion by cancer cells. Conversely, PSR activation of cancer cells plays an important role in their survival, proliferation and metastasis. Herein, we briefly summarize both recent advances in our understanding of the pathological roles of PS and its receptor in cancer biology, as well as relevant pharmacological approaches.

Keywords

Phosphatidylserine Phosphatidylserine receptor TAM receptor Cancer 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korean Government (2018R1A2B2003590 and 2017R1A4A1015860).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no competing interests.

References

  1. Albacker LA, Karisola P, Chang YJ, Umetsu SE, Zhou M, Akbari O, Kobayashi N, Baumgarth N, Freeman GJ, Umetsu DT, Dekruyff RH (2010) TIM-4, a receptor for phosphatidylserine, controls adaptive immunity by regulating the removal of antigen-specific T cells. J Immunol 185:6839–6849.  https://doi.org/10.4049/jimmunol.1001360 CrossRefGoogle Scholar
  2. Alciato F, Sainaghi PP, Sola D, Castello L, Avanzi GC (2010) TNF-alpha, IL-6, and IL-1 expression is inhibited by GAS6 in monocytes/macrophages. J Leukoc Biol 87:869–875.  https://doi.org/10.1189/jlb.0909610 CrossRefGoogle Scholar
  3. Alexander PB, Chen R, Gong C, Yuan L, Jasper JS, Ding Y, Markowitz GJ, Yang P, Xu X, Mcdonnell DP, Song E, Wang XF (2017) Distinct receptor tyrosine kinase subsets mediate Anti-HER2 drug resistance in breast cancer. J Biol Chem 292:748–759.  https://doi.org/10.1074/jbc.M116.754960 CrossRefGoogle Scholar
  4. Avilla E, Guarino V, Visciano C, Liotti F, Svelto M, Krishnamoorthy G, Franco R, Melillo RM (2011) Activation of TYRO3/AXL tyrosine kinase receptors in thyroid cancer. Cancer Res 71:1792–1804.  https://doi.org/10.1158/0008-5472.CAN-10-2186 CrossRefGoogle Scholar
  5. Behrens EM, Gadue P, Gong SY, Garrett S, Stein PL, Cohen PL (2003) The mer receptor tyrosine kinase: expression and function suggest a role in innate immunity. Eur J Immunol 33:2160–2167.  https://doi.org/10.1002/eji.200324076 CrossRefGoogle Scholar
  6. Belzile O, Huang X, Gong J, Carlson J, Schroit AJ, Brekken RA, Freimark BD (2018) Antibody targeting of phosphatidylserine for the detection and immunotherapy of cancer. Immunotargets Ther 7:1–14.  https://doi.org/10.2147/ITT.S134834 CrossRefGoogle Scholar
  7. Birge RB, Boeltz S, Kumar S, Carlson J, Wanderley J, Calianese D, Barcinski M, Brekken RA, Huang X, Hutchins JT, Freimark B, Empig C, Mercer J, Schroit AJ, Schett G, Herrmann M (2016) Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ 23:962–978.  https://doi.org/10.1038/cdd.2016.11 CrossRefGoogle Scholar
  8. Boshuizen J, Koopman LA, Krijgsman O, Shahrabi A, Van Den Heuvel EG, Ligtenberg MA, Vredevoogd DW, Kemper K, Kuilman T, Song JY, Pencheva N, Mortensen JT, Foppen MG, Rozeman EA, Blank CU, Janmaat ML, Satijn D, Breij ECW, Peeper DS, Parren P (2018) Cooperative targeting of melanoma heterogeneity with an AXL antibody-drug conjugate and BRAF/MEK inhibitors. Nat Med 24:203–212.  https://doi.org/10.1038/nm.4472 CrossRefGoogle Scholar
  9. Brandao LN, Winges A, Christoph S, Sather S, Migdall-Wilson J, Schlegel J, Mcgranahan A, Gao D, Liang X, Deryckere D, Graham DK (2013) Inhibition of MerTK increases chemosensitivity and decreases oncogenic potential in T-cell acute lymphoblastic leukemia. Blood Cancer J 3:e101.  https://doi.org/10.1038/bcj.2012.46 CrossRefGoogle Scholar
  10. Camenisch TD, Koller BH, Earp HS, Matsushima GKA (1999) novel receptor tyrosine kinase, Mer, inhibits TNF-α production and lipopolysaccharide-induced endotoxic shock. J Immunol 162:3498–3503Google Scholar
  11. Cerchia L, Esposito CL, Camorani S, Rienzo A, Stasio L, Insabato L, Affuso A, De Franciscis V (2012) Targeting Axl with an high-affinity inhibitory aptamer. Mol Ther 20:2291–2303.  https://doi.org/10.1038/mt.2012.163 CrossRefGoogle Scholar
  12. Chan PY, Carrera Silva EA, De Kouchkovsky D, Joannas LD, Hao L, Hu D, Huntsman S, Eng C, Licona-Limon P, Weinstein JS, Herbert DR, Craft JE, Flavell RA, Repetto S, Correale J, Burchard EG, Torgerson DG, Ghosh S, Rothlin CV (2016) The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity. Science 352:99–103.  https://doi.org/10.1126/science.aaf1358 CrossRefGoogle Scholar
  13. Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, Fujioka Y, Ohba Y, Gorman JV, Colgan JD, Hirashima M, Uede T, Takaoka A, Yagita H, Jinushi M (2012) Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 13:832–842.  https://doi.org/10.1038/ni.2376 CrossRefGoogle Scholar
  14. Cook RS, Jacobsen KM, Wofford AM, Deryckere D, Stanford J, Prieto AL, Redente E, Sandahl M, Hunter DM, Strunk KE, Graham DK, Earp HS 3rd (2013) MerTK inhibition in tumor leukocytes decreases tumor growth and metastasis. J Clin Investig 123:3231–3242.  https://doi.org/10.1172/JCI67655 CrossRefGoogle Scholar
  15. Cui JJ, Tran-Dube M, Shen H, Nambu M, Kung PP, Pairish M, Jia L, Meng J, Funk L, Botrous I, Mctigue M, Grodsky N, Ryan K, Padrique E, Alton G, Timofeevski S, Yamazaki S, Li Q, Zou H, Christensen J, Mroczkowski B, Bender S, Kania RS, Edwards MP (2011) Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem 54:6342–6363.  https://doi.org/10.1021/jm2007613 CrossRefGoogle Scholar
  16. Dai Y, Siemann DW (2010) BMS-777607, a small-molecule met kinase inhibitor, suppresses hepatocyte growth factor-stimulated prostate cancer metastatic phenotype in vitro. Mol Cancer Ther 9:1554–1561.  https://doi.org/10.1158/1535-7163.MCT-10-0359 CrossRefGoogle Scholar
  17. Dantas-Barbosa C, Lesluyes T, Loarer FL, Chibon F, Treilleux I, Coindre JM, Meeus P, Brahmi M, Bally O, Ray-Coquard I, Sunyach MP, Cesne AL, Mir O, Bonvalot S, Toulmonde M, Italiano A, Saintigny P, Jean-Denis M, Ducimetiere F, Ranchere D, El Sayadi H, Alberti L, Blay JY (2017) Expression and role of TYRO3 and AXL as potential therapeutical targets in leiomyosarcoma. Br J Cancer 117:1787–1797.  https://doi.org/10.1038/bjc.2017.354 CrossRefGoogle Scholar
  18. Dardalhon V, Anderson AC, Karman J, Apetoh L, Chandwaskar R, Lee DH, Cornejo M, Nishi N, Yamauchi A, Quintana FJ, Sobel RA, Hirashima M, Kuchroo VK (2010) Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells. J Immunol 185:1383–1392.  https://doi.org/10.4049/jimmunol.0903275 CrossRefGoogle Scholar
  19. Das M, Zhu C, Kuchroo VK (2017) Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev 276:97–111.  https://doi.org/10.1111/imr.12520 CrossRefGoogle Scholar
  20. Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 29:1046–1051.  https://doi.org/10.1038/nbt.1990 CrossRefGoogle Scholar
  21. Dekruyff RH, Bu X, Ballesteros A, Santiago C, Chim YL, Lee HH, Karisola P, Pichavant M, Kaplan GG, Umetsu DT, Freeman GJ, Casasnovas JM (2010) T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol 184:1918–1930.  https://doi.org/10.4049/jimmunol.0903059 CrossRefGoogle Scholar
  22. Deryckere D, Lee-Sherick AB, Huey MG, Hill AA, Tyner JW, Jacobsen KM, Page LS, Kirkpatrick GG, Eryildiz F, Montgomery SA, Zhang W, Wang X, Frye SV, Earp HS, Graham DK (2017) UNC2025, a MERTK small-molecule inhibitor, is therapeutically effective alone and in combination with methotrexate in leukemia models. Clin Cancer Res 23:1481–1492.  https://doi.org/10.1158/1078-0432.CCR-16-1330 CrossRefGoogle Scholar
  23. Fadeel B, Xue D (2009) The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit Rev Biochem Mol Biol 44:264–277.  https://doi.org/10.1080/10409230903193307 CrossRefGoogle Scholar
  24. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J immunol 148:2207–2276Google Scholar
  25. Ferris RL, Lu B, Kane LP (2014) Too much of a good thing? Tim-3 and TCR signaling in T cell exhaustion. J Immunol 193:1525–1530.  https://doi.org/10.4049/jimmunol.1400557 CrossRefGoogle Scholar
  26. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V, Zarour HM (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 207:2175–2186.  https://doi.org/10.1084/jem.20100637 CrossRefGoogle Scholar
  27. Freeman GJ, Casasnovas JM, Umetsu DT, Dekruyff RH (2010) TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev 235:172–189.  https://doi.org/10.1111/j.0105-2896.2010.00903.x CrossRefGoogle Scholar
  28. Gefen T, Castro I, Muharemagic D, Puplampu-Dove Y, Patel S, Gilboa E (2017) A TIM-3 oligonucleotide aptamer enhances T cell functions and potentiates tumor immunity in mice. Mol Ther 25:2280–2288.  https://doi.org/10.1016/j.ymthe.2017.06.023 CrossRefGoogle Scholar
  29. Ghosh AK, Secreto C, Boysen J, Sassoon T, Shanafelt TD, Mukhopadhyay D, Kay NE (2011) The novel receptor tyrosine kinase Axl is constitutively active in B-cell chronic lymphocytic leukemia and acts as a docking site of nonreceptor kinases: implications for therapy. Blood 117:1928–1937.  https://doi.org/10.1182/blood-2010-09-305649 CrossRefGoogle Scholar
  30. Gorman JV, Colgan JD (2014) Regulation of T cell responses by the receptor molecule Tim-3. Immunol Res 59:56–65.  https://doi.org/10.1007/s12026-014-8524-1 CrossRefGoogle Scholar
  31. Gould Wr BS, Schroeder R (2005) Gas6 receptors Axl, Sky and Mer enhance platelet activation and regulate thrombotic responses. J Thromb Haemost 3:733–741CrossRefGoogle Scholar
  32. Graham DK, Deryckere D, Davies KD, Earp HS (2014) The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nat Rev Cancer 14:769–785.  https://doi.org/10.1038/nrc3847 CrossRefGoogle Scholar
  33. Holland SJ, Pan A, Franci C, Hu Y, Chang B, Li W, Duan M, Torneros A, Yu J, Heckrodt TJ, Zhang J, Ding P, Apatira A, Chua J, Brandt R, Pine P, Goff D, Singh R, Payan DG, Hitoshi Y (2010) R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res 70:1544–1554.  https://doi.org/10.1158/0008-5472.CAN-09-2997 CrossRefGoogle Scholar
  34. Huang YH, Zhu C, Kondo Y, Anderson AC, Gandhi A, Russell A, Dougan SK, Petersen BS, Melum E, Pertel T, Clayton KL, Raab M, Chen Q, Beauchemin N, Yazaki PJ, Pyzik M, Ostrowski MA, Glickman JN, Rudd CE, Ploegh HL, Franke A, Petsko GA, Kuchroo VK, Blumberg RS (2015) CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517:386–390.  https://doi.org/10.1038/nature13848 CrossRefGoogle Scholar
  35. Huynh M-LN, Fadok VA, Henson PM (2002) Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation. J Clin Investig 109:41–50.  https://doi.org/10.1172/jci0211638 CrossRefGoogle Scholar
  36. Jin HT, Anderson AC, Tan WG, West EE, Ha SJ, Araki K, Freeman GJ, Kuchroo VK, Ahmed R (2010) Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci USA 107:14733–14738.  https://doi.org/10.1073/pnas.1009731107 CrossRefGoogle Scholar
  37. Kabir TD, Ganda C, Brown RM, Beveridge DJ, Richardson KL, Chaturvedi V, Candy P, Epis M, Wintle L, Kalinowski F, Kopp C, Stuart LM, Yeoh GC, George J, Leedman PJ (2018) A microRNA-7/growth arrest specific 6/TYRO3 axis regulates the growth and invasiveness of sorafenib-resistant cells in human hepatocellular carcinoma. Hepatology 67:216–231.  https://doi.org/10.1002/hep.29478 CrossRefGoogle Scholar
  38. Kim D, Lee KW, Jung H, Kim M, Lee J-Y, Lee Y, Hwang JY, Min Y, Lee CH, Cho SY (2018) Design and synthesis of novel 2,4-diamino-5-pyrazol-4-yl pyrimidine derivatives as selective Tyro3 kinase inhibitors. Bull Korean Chem Soc 39:1101–1104.  https://doi.org/10.1002/bkcs.11541 CrossRefGoogle Scholar
  39. Leconet W, Chentouf M, Du Manoir S, Chevalier C, Sirvent A, Ait-Arsa I, Busson M, Jarlier M, Radosevic-Robin N, Theillet C, Chalbos D, Pasquet JM, Pelegrin A, Larbouret C, Robert B (2017) Therapeutic activity of anti-AXL antibody against triple-negative breast cancer patient-derived xenografts and metastasis. Clin Cancer Res 23:2806–2816.  https://doi.org/10.1158/1078-0432.CCR-16-1316 CrossRefGoogle Scholar
  40. Lee-Sherick AB, Jacobsen KM, Henry CJ, Huey MG, Parker RE, Page LS, Hill AA, Wang X, Frye SV, Earp HS, Jordan CT, Deryckere D, Graham DK (2018) MERTK inhibition alters the PD-1 axis and promotes anti-leukemia immunity. JCI Insight.  https://doi.org/10.1172/jci.insight.97941 Google Scholar
  41. Li Y, Ye X, Tan C, Hongo JA, Zha J, Liu J, Kallop D, Ludlam MJ, Pei L (2009) Axl as a potential therapeutic target in cancer: role of Axl in tumor growth, metastasis and angiogenesis. Oncogene 28:3442–3455.  https://doi.org/10.1038/onc.2009.212 CrossRefGoogle Scholar
  42. Linger RM, Keating AK, Earp HS, Graham DK (2008) TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res 100:35–83.  https://doi.org/10.1016/S0065-230X(08)00002-X CrossRefGoogle Scholar
  43. Linger RM, Lee-Sherick AB, Deryckere D, Cohen RA, Jacobsen KM, Mcgranahan A, Brandao LN, Winges A, Sawczyn KK, Liang X, Keating AK, Tan AC, Earp HS, Graham DK (2013) Mer receptor tyrosine kinase is a therapeutic target in pre-B-cell acute lymphoblastic leukemia. Blood 122:1599–1609.  https://doi.org/10.1182/blood-2013-01-478156 CrossRefGoogle Scholar
  44. Loges S, Schmidt T, Tjwa M, Van Geyte K, Lievens D, Lutgens E, Vanhoutte D, Borgel D, Plaisance S, Hoylaerts M, Luttun A, Dewerchin M, Jonckx B, Carmeliet P (2010) Malignant cells fuel tumor growth by educating infiltrating leukocytes to produce the mitogen Gas6. Blood 115:2264–2273.  https://doi.org/10.1182/blood-2009-06-228684 CrossRefGoogle Scholar
  45. Mcintire JJ, Umetsu DT, Dekruyff RH (2004) TIM-1, a novel allergy and asthma susceptibility gene. Springer Semin Immunopathol 25:335–348.  https://doi.org/10.1007/s00281-003-0141-3 CrossRefGoogle Scholar
  46. Minson KA, Smith CC, Deryckere D, Libbrecht C, Lee-Sherick AB, Huey MG, Lasater EA, Kirkpatrick GD, Stashko MA, Zhang W, Jordan CT, Kireev D, Wang X, Frye SV, Earp HS, Shah NP, Graham DK (2016) The MERTK/FLT3 inhibitor MRX-2843 overcomes resistance-conferring FLT3 mutations in acute myeloid leukemia. JCI Insight 1:e85630.  https://doi.org/10.1172/jci.insight.85630 CrossRefGoogle Scholar
  47. Mollard A, Warner SL, Call LT, Wade ML, Bearss JJ, Verma A, Sharma S, Vankayalapati H, Bearss DJ (2011) Design, synthesis and biological evaluation of a series of novel Axl kinase inhibitors. ACS Med Chem Lett 2:907–912.  https://doi.org/10.1021/ml200198x CrossRefGoogle Scholar
  48. Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T, Manning S, Greenfield EA, Coyle AJ, Sobel RA, Freema GJ, Kuchroo VK (2002) Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415:536–541.  https://doi.org/10.1038/415536a CrossRefGoogle Scholar
  49. Myers SH, Brunton VG, Unciti-Broceta A (2016) AXL inhibitors in cancer: a medicinal chemistry perspective. J Med Chem 59:3593–3608.  https://doi.org/10.1021/acs.jmedchem.5b01273 CrossRefGoogle Scholar
  50. Nagata K, Ohashi K, Nakano T, Arita H, Zong C, Hanafusa H, Mizuno K (1996) Identification of the product of growth arrest-specific gene 6 as a common ligand for Axl, Sky, and Mer receptor tyrosine kinases. J Biol Chem 271:30022–30027.  https://doi.org/10.1074/jbc.271.47.30022 CrossRefGoogle Scholar
  51. Ou WB, Corson JM, Flynn DL, Lu WP, Wise SC, Bueno R, Sugarbaker DJ, Fletcher JA (2011) AXL regulates mesothelioma proliferation and invasiveness. Oncogene 30:1643–1652.  https://doi.org/10.1038/onc.2010.555 CrossRefGoogle Scholar
  52. Paolino M, Choidas A, Wallner S, Pranjic B, Uribesalgo I, Loeser S, Jamieson AM, Langdon WY, Ikeda F, Fededa JP, Cronin SJ, Nitsch R, Schultz-Fademrecht C, Eickhoff J, Menninger S, Unger A, Torka R, Gruber T, Hinterleitner R, Baier G, Wolf D, Ullrich A, Klebl BM, Penninger JM (2014) The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature 507:508–512.  https://doi.org/10.1038/nature12998 CrossRefGoogle Scholar
  53. Patwardhan PP, Ivy KS, Musi E, de Stanchina E, Schwartz GK (2015) Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma. Oncotarget 7:4093–4109.  https://doi.org/10.18632/oncotarget.6547 Google Scholar
  54. Pauken KE, Wherry EJ (2015) Overcoming T cell exhaustion in infection and cancer. Trends Immunol 36:265–276.  https://doi.org/10.1016/j.it.2015.02.008 CrossRefGoogle Scholar
  55. Powell NA, Kohrt JT, Filipski KJ, Kaufman M, Sheehan D, Edmunds JE, Delaney A, Wang Y, Bourbonais F, Lee DY, Schwende F, Sun F, Mcconnell P, Catana C, Chen H, Ohren J, Perrin LA (2012) Novel and selective spiroindoline-based inhibitors of Sky kinase. Bioorg Med Chem Lett 22:190–193.  https://doi.org/10.1016/j.bmcl.2011.11.036 CrossRefGoogle Scholar
  56. Powell NA, Hoffman JK, Ciske FL, Kaufman MD, Kohrt JT, Quin J 3rd, Sheehan DJ, Delaney A, Baxi SM, Catana C, Mcconnell P, Ohren J, Perrin LA, Edmunds JJ (2013a) Highly selective 2,4-diaminopyrimidine-5-carboxamide inhibitors of Sky kinase. Bioorg Med Chem Lett 23:1046–1050.  https://doi.org/10.1016/j.bmcl.2012.12.013 CrossRefGoogle Scholar
  57. Powell NA, Hoffman JK, Ciske FL, Kohrt JT, Baxi SM, Peng YW, Zhong M, Catana C, Ohren J, Perrin LA, Edmunds JJ (2013b) Optimization of highly selective 2,4-diaminopyrimidine-5-carboxamide inhibitors of Sky kinase. Bioorg Med Chem Lett 23:1051–1055.  https://doi.org/10.1016/j.bmcl.2012.12.028 CrossRefGoogle Scholar
  58. Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y, Chen W, Liu F, Sun W, Li XF, Wang X, Wang Y, Xu ZY, Gao L, Yang Q, Xu B, Li YM, Fang ZY, Xu ZP, Bao Y, Wu DS, Miao X, Sun HY, Sun YH, Wang HY, Wang LH (2016) Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell 29:653–668.  https://doi.org/10.1016/j.ccell.2016.03.004 CrossRefGoogle Scholar
  59. Ran S, Downes A, Thorpe PE (2002) Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 62:6132–6140Google Scholar
  60. Rho JK, Choi YJ, Kim SY, Kim TW, Choi EK, Yoon SJ, Park BM, Park E, Bae JH, Choi CM, Lee JC (2014) MET and AXL inhibitor NPS-1034 exerts efficacy against lung cancer cells resistant to EGFR kinase inhibitors because of MET or AXL activation. Cancer Res 74:253–262.  https://doi.org/10.1158/0008-5472.CAN-13-1103 CrossRefGoogle Scholar
  61. Rothlin CV, Ghosh S, Zuniga EI, Oldstone MB, Lemke G (2007) TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131:1124–1136.  https://doi.org/10.1016/j.cell.2007.10.034 CrossRefGoogle Scholar
  62. Rotte A, Jin JY, Lemaire V (2018) Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Ann Oncol 29:71–83.  https://doi.org/10.1093/annonc/mdx686 CrossRefGoogle Scholar
  63. Ruvolo PP, Ma H, Ruvolo VR, Zhang X, Mu H, Schober W, Hernandez I, Gallardo M, Khoury JD, Cortes J, Andreeff M, Post SM (2017) Anexelekto/MER tyrosine kinase inhibitor ONO-7475 arrests growth and kills FMS-like tyrosine kinase 3-internal tandem duplication mutant acute myeloid leukemia cells by diverse mechanisms. Haematologica 102:2048–2057.  https://doi.org/10.3324/haematol.2017.168856 CrossRefGoogle Scholar
  64. Sabatos CA, Chakravarti S, Cha E, Schubart A, Sanchez-Fueyo A, Zheng XX, Coyle AJ, Strom TB, Freeman GJ, Kuchroo VK (2003) Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol 4:1102–1110.  https://doi.org/10.1038/ni988 CrossRefGoogle Scholar
  65. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207:2187–2194.  https://doi.org/10.1084/jem.20100643 CrossRefGoogle Scholar
  66. Santiago C, Ballesteros A, Martinez-Munoz L, Mellado M, Kaplan GG, Freeman GJ, Casasnovas JM (2007) Structures of T cell immunoglobulin mucin protein 4 show a metal-Ion-dependent ligand binding site where phosphatidylserine binds. Immunity 27:941–951.  https://doi.org/10.1016/j.immuni.2007.11.008 CrossRefGoogle Scholar
  67. Schmid ET, Pang IK, Carrera Silva EA, Bosurgi L, Miner JJ, Diamond MS, Iwasaki A, Rothlin CV (2016) AXL receptor tyrosine kinase is required for T cell priming and antiviral immunity. Elife.  https://doi.org/10.7554/elife.12414 Google Scholar
  68. Schroeder GM, An Y, Cai ZW, Chen XT, Clark C, Cornelius LA, Dai J, Gullo-Brown J, Gupta A, Henley B, Hunt JT, Jeyaseelan R, Kamath A, Kim K, Lippy J, Lombardo LJ, Manne V, Oppenheimer S, Sack JS, Schmidt RJ, Shen G, Stefanski K, Tokarski JS, Trainor GL, Wautlet BS, Wei D, Williams DK, Zhang Y, Zhang Y, Fargnoli J, Borzilleri RM (2009) Discovery of N-(4-(2-amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluor ophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a selective and orally efficacious inhibitor of the Met kinase superfamily. J Med Chem 52:1251–1254.  https://doi.org/10.1021/jm801586s CrossRefGoogle Scholar
  69. Schroit AJ, Madsen JW, Tanaka Y (1985) In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membranes. J Biol Chem 260:5131–5138Google Scholar
  70. Schulz NT (1995) Paulhiac CI, Lee L, Zhou R. Brain Res Mol Brain Res 28:273–280CrossRefGoogle Scholar
  71. Scott RS, Mcmahon EJ, Pop SM, Reap EA, Caricchio R, Cohen PL, Earp HS, Matsushima GK (2001) Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411:207–211.  https://doi.org/10.1038/35075603 CrossRefGoogle Scholar
  72. Segawa K, Nagata S (2015) An apoptotic ‘Eat Me’ signal: phosphatidylserine exposure. Trends Cell Biol 25:639–650.  https://doi.org/10.1016/j.tcb.2015.08.003 CrossRefGoogle Scholar
  73. Sen P, Wallet MA, Yi Z, Huang Y, Henderson M, Mathews CE, Earp HS, Matsushima G, Baldwin AS Jr, Tisch RM (2007) Apoptotic cells induce Mer tyrosine kinase-dependent blockade of NF-kappaB activation in dendritic cells. Blood 109:653–660.  https://doi.org/10.1182/blood-2006-04-017368 CrossRefGoogle Scholar
  74. Shen Y, Chen X, He J, Liao D, Zu X (2018) Axl inhibitors as novel cancer therapeutic agents. Life Sci 198:99–111.  https://doi.org/10.1016/j.lfs.2018.02.033 CrossRefGoogle Scholar
  75. Shin JS, Hong SW, Moon JH, Kim JS, Jung KA, Kim SM, Lee DH, Kim I, Yoon SJ, Lee CG, Choi EK, Lee JY, Kim KP, Hong YS, Lee JL, Kim B, Choi EK, Lee JS, Jin DH, Kim TW (2014) NPS-1034, a novel MET inhibitor, inhibits the activated MET receptor and its constitutively active mutants. Investig New Drugs 32:389–399.  https://doi.org/10.1007/s10637-013-0039-4 CrossRefGoogle Scholar
  76. Sinha S, Boysen J, Nelson M, Secreto C, Warner SL, Bearss DJ, Lesnick C, Shanafelt TD, Kay NE, Ghosh AK (2015) Targeted Axl inhibition primes chronic lymphocytic leukemia B cells to apoptosis and shows synergistic/additive effects in combination with BTK inhibitors. Clin Cancer Res 21:2115–2126.  https://doi.org/10.1158/1078-0432.CCR-14-1892 CrossRefGoogle Scholar
  77. Sinik L, Minson KA, Tentler JJ, Carrico J, Bagby SM, Robinson WA, Kami R, Burstyn-Cohen T, Eckhardt SG, Wang X, Frye SV, Earp HS, Deryckere D, Graham DK (2019) Inhibition of MERTK promotes suppression of tumor growth in BRAF mutant and BRAF wild-type melanoma. Mol Cancer Ther 18:278–288.  https://doi.org/10.1158/1535-7163.MCT-18-0456 CrossRefGoogle Scholar
  78. Smart SK, Vasileiadi E, Wang X, Deryckere D, Graham DK (2018) The emerging role of TYRO3 as a therapeutic target in cancer. Cancers 10:25.  https://doi.org/10.3390/cancers10120474 CrossRefGoogle Scholar
  79. Stanford JC, Young C, Hicks D, Owens P, Williams A, Vaught DB, Morrison MM, Lim J, Williams M, Brantley-Sieders DM, Balko JM, Tonetti D, Earp HS 3rd, Cook RS (2014) Efferocytosis produces a prometastatic landscape during postpartum mammary gland involution. J Clin Investig 124:4737–4752.  https://doi.org/10.1172/JCI76375 CrossRefGoogle Scholar
  80. Stitt TN, Conn G, Gore M, Lai C, Bruno J, Radziejewski C, Mattsson K, Fisher J, Gies DR, Jones PF, Masiakowski P, Ryan TE, Tobkes NJ, Chen DH, DiStefano PS, Long GL, Basilico C, Goldfarb MP, Glass DJ, Lemke G, Yancopoulos GD (1995) The anticoagulation factor protein S and its relative Gas6, are ligands for the Tyro3/Axl family of receptor tyrosine kinases. Cell 80:661–670CrossRefGoogle Scholar
  81. Taylor DD, Gercel-Taylor C (2011) Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Semin Immunopathol 33:441–454.  https://doi.org/10.1007/s00281-010-0234-8 CrossRefGoogle Scholar
  82. Ubil E, Caskey L, Holtzhausen A, Hunter D, Story C, Earp HS (2018) Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J Clin Investig 128:2356–2369.  https://doi.org/10.1172/JCI97354 CrossRefGoogle Scholar
  83. Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ (1991) Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res 51:3062–3066Google Scholar
  84. Van Der Mijn JC, Broxterman HJ, Knol JC, Piersma SR, De Haas RR, Dekker H, Pham TV, Van Beusechem VW, Halmos B, Mier JW, Jimenez CR, Verheul HM (2016) Sunitinib activates Axl signaling in renal cell cancer. Int J Cancer 138:3002–3010.  https://doi.org/10.1002/ijc.30022 CrossRefGoogle Scholar
  85. Varnum BC, Young C, Elliott G, Garcia A, Bartley TD, Fridell Y-W, Hunt RW, Trail G, Clogston C, Toso RJ, Yanagihara D, Bennett L, Sylber M, Merewether LA, Tseng A, Escobar E, Liu ET, Yamane HK (1995) Axl receptor tyrosine kinase stimulated by the vitamin K-dependent protein encoded by growth-arrest-specific gene 6. Nature 373:623–626.  https://doi.org/10.1038/373623a0 CrossRefGoogle Scholar
  86. Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I (1997) Immunosuppressive effects of apoptotic cells. Nature 390:350–351.  https://doi.org/10.1038/37022 CrossRefGoogle Scholar
  87. Vouri M, Hafizi S (2017) TAM receptor tyrosine kinases in cancer drug resistance. Cancer Res 77:2775–2778.  https://doi.org/10.1158/0008-5472.CAN-16-2675 CrossRefGoogle Scholar
  88. Wang X, Liu J, Zhang W, Stashko MA, Nichols J, Miley MJ, Norris-Drouin J, Chen Z, Machius M, Deryckere D, Wood E, Graham DK, Earp HS, Kireev D, Frye SV (2016) Design and synthesis of novel macrocyclic mer tyrosine kinase inhibitors. ACS Med Chem Lett 7:1044–1049.  https://doi.org/10.1021/acsmedchemlett.6b00221 CrossRefGoogle Scholar
  89. Wu G, Ma Z, Cheng Y, Hu W, Deng C, Jiang S, Li T, Chen F, Yang Y (2018) Targeting Gas6/TAM in cancer cells and tumor microenvironment. Mol Cancer 17:20.  https://doi.org/10.1186/s12943-018-0769-1 CrossRefGoogle Scholar
  90. Ye X, Li Y, Stawicki S, Couto S, Eastham-Anderson J, Kallop D, Weimer R, Wu Y, Pei L (2010) An anti-Axl monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies. Oncogene 29:5254–5264.  https://doi.org/10.1038/onc.2010.268 CrossRefGoogle Scholar
  91. Yin Y, Huang X, Lynn KD, Thorpe PE (2013) Phosphatidylserine-targeting antibody induces M1 macrophage polarization and promotes myeloid-derived suppressor cell differentiation. Cancer Immunol Res 1:256–268.  https://doi.org/10.1158/2326-6066.CIR-13-0073 CrossRefGoogle Scholar
  92. Yokoyama Y, Lew ED, Seelige R, Tindal EA, Walsh C, Fagan PC, Lee JY, Nevarez R, Oh J, Tucker KD, Chen M, Diliberto A, Vaaler H, Smith KM, Albert A, Li G, Bui JD (2019) Immuno-oncological Efficacy of RXDX-106, a novel TAM (TYRO3, AXL, MER) family small-molecule kinase inhibitor. Cancer Res 79:1996–2008.  https://doi.org/10.1158/0008-5472.CAN-18-2022 CrossRefGoogle Scholar
  93. Zhang Z, Lee JC, Lin L, Olivas V, Au V, Laframboise T, Abdel-Rahman M, Wang X, Levine AD, Rho JK, Choi YJ, Choi CM, Kim SW, Jang SJ, Park YS, Kim WS, Lee DH, Lee JS, Miller VA, Arcila M, Ladanyi M, Moonsamy P, Sawyers C, Boggon TJ, Ma PC, Costa C, Taron M, Rosell R, Halmos B, Bivona TG (2012) Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet 44:852–860.  https://doi.org/10.1038/ng.2330 CrossRefGoogle Scholar
  94. Zhou L, Liu XD, Sun M, Zhang X, German P, Bai S, Ding Z, Tannir N, Wood CG, Matin SF, Karam JA, Tamboli P, Sircar K, Rao P, Rankin EB, Laird DA, Hoang AG, Walker CL, Giaccia AJ, Jonasch E (2016) Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene 35:2687–2697.  https://doi.org/10.1038/onc.2015.343 CrossRefGoogle Scholar
  95. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, Zheng XX, Strom TB, Kuchroo VK (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6:1245–1252.  https://doi.org/10.1038/ni1271 CrossRefGoogle Scholar
  96. Zizzo G, Hilliard BA, Monestier M, Cohen PL (2012) Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol 189:3508–3520.  https://doi.org/10.4049/jimmunol.1200662 CrossRefGoogle Scholar
  97. Zou HY, Li Q, Lee JH, Arango ME, Mcdonnell SR, Yamazaki S, Koudriakova TB, Alton G, Cui JJ, Kung PP, Nambu MD, Los G, Bender SL, Mroczkowski B, Christensen JG (2007) An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 67:4408–4417.  https://doi.org/10.1158/0008-5472.CAN-06-4443 CrossRefGoogle Scholar
  98. Zucca LE, Morini Matushita MA, Da Silva Oliveira RJ, Scapulatempo-Neto C, De Lima MA, Ribeiro GG, Viana CR, Carcano FM, Reis RM (2018) Expression of tyrosine kinase receptor AXL is associated with worse outcome of metastatic renal cell carcinomas treated with sunitinib. Urol Oncol 36:11.e13–11.e21.  https://doi.org/10.1016/j.urolonc.2017.09.003 CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2019

Authors and Affiliations

  1. 1.College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations