Advertisement

Archives of Pharmacal Research

, Volume 42, Issue 6, pp 455–465 | Cite as

Various approaches for measurement of synaptic vesicle endocytosis at the central nerve terminal

  • Yeonsun Jin
  • Kyoung Hee Seo
  • Hyun Myung Ko
  • Tae Woo Jung
  • Yoon Hee Chung
  • Jong Hyuk Lee
  • Hyun Ho Park
  • Hyoung-Chun Kim
  • Ji Hoon Jeong
  • Sung Hoon LeeEmail author
Review

Abstract

At the presynaptic terminal, neurotransmitters are stored in synaptic vesicles (SVs), which are released and recycled via exo- and endocytosis. SV endocytosis is crucial for sustaining synaptic transmission by maintaining the SV pool. Many studies have shown that presynaptic dysfunction, particularly impairment of SV endocytosis, is related to neurological disorders. Notably, the presynaptic terminal is considered to be a sensitive structure because certain presynaptic dysfunctions, manifested as impaired SV endocytosis or ultrastructural changes in the presynaptic terminal, can be observed before there is a biochemical or pathological evidence of a neurological disorder. Therefore, monitoring and assessing the presynaptic function by SV endocytosis facilitates the development of early markers for neurological disorders. In this study, we reviewed the current methods for assessing and visualizing SV endocytosis at the central nerve terminal.

Keywords

Presynaptic terminal Synaptic vesicle Endocytosis Method Central nerve terminal 

Notes

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF), Grant funded by the Korea Government (MEST) (No. 2017R1D1A1B03031920), and the Chung-Ang University Graduate Research Scholarship in 2018.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.

References

  1. Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76CrossRefGoogle Scholar
  2. Andreae LC, Fredj NB, Burrone J (2012) Independent vesicle pools underlie different modes of release during neuronal development. J Neurosci 32:1867–1874CrossRefGoogle Scholar
  3. Arranz AM, Delbroek L, Van Kolen K, Guimaraes MR, Mandemakers W, Daneels G, Matta S, Calafate S, Shaban H, Baatsen P, De Bock PJ, Gevaert K, Vanden Berghe P, Verstreken P, De Strooper B, Moechars D (2015) LRRK2 functions in synaptic vesicle endocytosis through a kinase-dependent mechanism. J Cell Sci 128:541–552CrossRefGoogle Scholar
  4. Balaji J, Ryan T (2007) Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc Natl Acad Sci USA 104:20576–20581CrossRefGoogle Scholar
  5. Bats C, Groc L, Choquet D (2007) The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53:719–734CrossRefGoogle Scholar
  6. Betz WJ, Bewick GS (1992) Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255:200–203CrossRefGoogle Scholar
  7. Budzinski KL, Zeigler M, Fujimoto BS, Bajjalieh SM, Chiu DT (2011) Measurements of the acidification kinetics of single SynaptopHluorin vesicles. Biophys J 101:1580–1589CrossRefGoogle Scholar
  8. Burette AC, Lesperance T, Crum J, Martone M, Volkmann N, Ellisman MH, Weinberg RJ (2012) Electron tomographic analysis of synaptic ultrastructure. J Comp Neurol 520:2697–2711CrossRefGoogle Scholar
  9. Castermans D, Volders K, Crepel A, Backx L, De Vos R, Freson K, Meulemans S, Vermeesch JR, Schrander-Stumpel CT, De Rijk P, Del-Favero J, Van Geet C, Van De Ven WJ, Steyaert JG, Devriendt K, Creemers JW (2010) SCAMP5, NBEA and AMISYN: three candidate genes for autism involved in secretion of large dense-core vesicles. Hum Mol Genet 19:1368–1378CrossRefGoogle Scholar
  10. Clayton EL, Cousin MA (2009) The molecular physiology of activity-dependent bulk endocytosis of synaptic vesicles. J Neurochem 111:901–914CrossRefGoogle Scholar
  11. Clayton EL, Evans GJ, Cousin MA (2008) Bulk synaptic vesicle endocytosis is rapidly triggered during strong stimulation. J Neurosci 28:6627–6632CrossRefGoogle Scholar
  12. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445CrossRefGoogle Scholar
  13. Dai J, Ting-Beall HP, Sheetz MP (1997) The secretion-coupled endocytosis correlates with membrane tension changes in RBL 2H3 cells. J Gen Physiol 110:1–10CrossRefGoogle Scholar
  14. Delvendahl I, Vyleta NP, Von Gersdorff H, Hallermann S (2016) Fast, temperature-sensitive and clathrin-independent endocytosis at central synapses. Neuron 90:492–498CrossRefGoogle Scholar
  15. Denker A, Rizzoli SO (2010) Synaptic vesicle pools: an update. Front Synaptic Neurosci 2:135Google Scholar
  16. Diril MK, Wienisch M, Jung N, Klingauf J, Haucke V (2006) Stonin 2 is an AP-2-dependent endocytic sorting adaptor for synaptotagmin internalization and recycling. Dev Cell 10:233–244CrossRefGoogle Scholar
  17. Dubochet J (1995) High-pressure freezing for cryoelectron microscopy. Trends Cell Biol 5:366–368CrossRefGoogle Scholar
  18. Elhamdani A, Azizi F, Artalejo CR (2006) Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion. J Neurosci 26:3030–3036CrossRefGoogle Scholar
  19. Fernandez JM, Neher E, Gomperts BD (1984) Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 312:453–455CrossRefGoogle Scholar
  20. Gaffield MA, Betz WJ (2006) Imaging synaptic vesicle exocytosis and endocytosis with FM dyes. Nat Protoc 1:2916–2921CrossRefGoogle Scholar
  21. Gan Q, Watanabe S (2018) Synaptic vesicle endocytosis in different model systems. Front Cell Neurosci 12:171CrossRefGoogle Scholar
  22. Gillespie J (1979) The effect of repetitive stimulation on the passive electrical properties of the presynaptic terminal of the squid giant synapse. Proc R Soc Lond B 206:293–306CrossRefGoogle Scholar
  23. Gimber N, Tadeus G, Maritzen T, Schmoranzer J, Haucke V (2015) Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins. Nat Commun 6:8392CrossRefGoogle Scholar
  24. Gotow T, Miyaguchi K, Hashimoto P (1991) Cytoplasmic architecture of the axon terminal: filamentous strands specifically associated with synaptic vesicles. Neuroscience 40:587–598CrossRefGoogle Scholar
  25. Granseth B, Odermatt B, Royle SJ, Lagnado L (2006) Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51:773–786CrossRefGoogle Scholar
  26. Hammarlund M, Palfreyman MT, Watanabe S, Olsen S, Jorgensen EM (2007) Open syntaxin docks synaptic vesicles. PLoS Biol 5:e198CrossRefGoogle Scholar
  27. Harata N, Ryan TA, Smith SJ, Buchanan J, Tsien RW (2001) Visualizing recycling synaptic vesicles in hippocampal neurons by FM 1-43 photoconversion. Proc Natl Acad Sci USA 98:12748–12753CrossRefGoogle Scholar
  28. He L, Wu LG (2007) The debate on the kiss-and-run fusion at synapses. Trends Neurosci 30:447–455CrossRefGoogle Scholar
  29. He L, Wu X-S, Mohan R, Wu L-G (2006) Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 444:102–105CrossRefGoogle Scholar
  30. Heuser JE (1989) Review of electron microscopic evidence favouring vesicle exocytosis as the structural basis for quantal release during synaptic transmission. Q J Exp Physiol 74:1051–1069CrossRefGoogle Scholar
  31. Heuser J, Reese T (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57:315–344CrossRefGoogle Scholar
  32. Holtzman E, Freeman AR, Kashner LA (1971) Stimulation-dependent alterations in peroxidase uptake at lobster neuromuscular junctions. Science 173:733–736CrossRefGoogle Scholar
  33. Hoopmann P, Punge A, Barysch SV, Westphal V, Buckers J, Opazo F, Bethani I, Lauterbach MA, Hell SW, Rizzoli SO (2010) Endosomal sorting of readily releasable synaptic vesicles. Proc Natl Acad Sci USA 107:19055–19060CrossRefGoogle Scholar
  34. Hua Y, Sinha R, Thiel CS, Schmidt R, Hüve J, Martens H, Hell SW, Egner A, Klingauf J (2011) A readily retrievable pool of synaptic vesicles. Nat Neurosci 14:833–839CrossRefGoogle Scholar
  35. Hua Y, Woehler A, Kahms M, Haucke V, Neher E, Klingauf J (2013) Blocking endocytosis enhances short-term synaptic depression under conditions of normal availability of vesicles. Neuron 80:343–349CrossRefGoogle Scholar
  36. Kahms M, Klingauf J (2018) Novel pH-sensitive lipid based exo-endocytosis tracers reveal fast intermixing of synaptic vesicle pools. Front Cell Neurosci 12:18CrossRefGoogle Scholar
  37. Kavalali ET, Jorgensen EM (2014) Visualizing presynaptic function. Nat Neurosci 17:10–16CrossRefGoogle Scholar
  38. Kelly BL, Ferreira A (2007) Beta-amyloid disrupted synaptic vesicle endocytosis in cultured hippocampal neurons. Neuroscience 147:60–70CrossRefGoogle Scholar
  39. Klingauf J, Kavalali ET, Tsien RW (1998) Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394:581–585CrossRefGoogle Scholar
  40. Klyachko VA, Jackson MB (2002) Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature 418:89–92CrossRefGoogle Scholar
  41. Kononenko NL, Haucke V (2015) Molecular mechanisms of presynaptic membrane retrieval and synaptic vesicle reformation. Neuron 85:484–496CrossRefGoogle Scholar
  42. Kononenko NL, Puchkov D, Classen GA, Walter AM, Pechstein A, Sawade L, Kaempf N, Trimbuch T, Lorenz D, Rosenmund C, Maritzen T, Haucke V (2014) Clathrin/AP-2 mediate synaptic vesicle reformation from endosome-like vacuoles but are not essential for membrane retrieval at central synapses. Neuron 82:981–988CrossRefGoogle Scholar
  43. Kuijpers M, Haucke V (2018) Presynaptic endocytic factors in autophagy and neurodegeneration. Curr Opin Neurobiol 48:153–159CrossRefGoogle Scholar
  44. Kyung JW, Kim JM, Lee W, Ha TY, Cha SH, Chung KH, Choi DJ, Jou I, Song WK, Joe EH, Kim SH, Park SM (2018) DJ-1 deficiency impairs synaptic vesicle endocytosis and reavailability at nerve terminals. Proc Natl Acad Sci USA 115:1629–1634CrossRefGoogle Scholar
  45. Leitz J, Kavalali ET (2014) Fast retrieval and autonomous regulation of single spontaneously recycling synaptic vesicles. eLife 3:e03658CrossRefGoogle Scholar
  46. Li Y, Tsien RW (2012) pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat Neurosci 15:1047–1053CrossRefGoogle Scholar
  47. Li H, Foss SM, Dobryy YL, Park CK, Hires SA, Shaner NC, Tsien RY, Osborne LC, Voglmaier SM (2011) Concurrent imaging of synaptic vesicle recycling and calcium dynamics. Front Mol Neurosci 4:34CrossRefGoogle Scholar
  48. Li S, Raychaudhuri S, Watanabe S (2017) Flash-and-freeze: a novel technique to capture membrane dynamics with electron microscopy. J Vis Exp.  https://doi.org/10.3791/55664 Google Scholar
  49. Lindau M, De Toledo GA (2003) The fusion pore. Biochim Biophys Acta 1641:167–173CrossRefGoogle Scholar
  50. Llobet A, Gallop JL, Burden JJ, Çamdere G, Chandra P, Vallis Y, Hopkins CR, Lagnado L, Mcmahon HT (2011) Endophilin drives the fast mode of vesicle retrieval in a ribbon synapse. J Neurosci 31:8512–8519CrossRefGoogle Scholar
  51. Martineau M, Somasundaram A, Grimm JB, Gruber TD, Choquet D, Taraska JW, Lavis LD, Perrais D (2017) Semisynthetic fluorescent pH sensors for imaging exocytosis and endocytosis. Nat Commun 8:1412CrossRefGoogle Scholar
  52. Matthews G (1996) Synaptic exocytosis and endocytosis: capacitance measurements. Curr Opin Neurobiol 6:358–364CrossRefGoogle Scholar
  53. Miesenböck G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195CrossRefGoogle Scholar
  54. Mishra AR, Zheng J, Tang X, Goering PL (2016) Silver nanoparticle-induced autophagic-lysosomal disruption and NLRP3-inflammasome activation in HepG2 cells is size-dependent. Toxicol Sci 150:473–487CrossRefGoogle Scholar
  55. Murthy VN, Stevens CF (1998) Synaptic vesicles retain their identity through the endocytic cycle. Nature 392:497–501CrossRefGoogle Scholar
  56. Neher E (2010) What is rate-limiting during sustained synaptic activity: vesicle supply or the availability of release sites. Front Synaptic Neurosci 2:144CrossRefGoogle Scholar
  57. Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA 79:6712–6716CrossRefGoogle Scholar
  58. Oracz J, Westphal V, Radzewicz C, Sahl SJ, Hell SW (2017) Photobleaching in STED nanoscopy and its dependence on the photon flux applied for reversible silencing of the fluorophore. Sci Rep 7:11354CrossRefGoogle Scholar
  59. Park H, Li Y, Tsien RW (2012) Influence of synaptic vesicle position on release probability and exocytotic fusion mode. Science 335:1362–1366CrossRefGoogle Scholar
  60. Pech U, Revelo NH, Seitz KJ, Rizzoli SO, Fiala A (2015) Optical dissection of experience-dependent pre- and postsynaptic plasticity in the Drosophila brain. Cell Rep 10:2083–2095CrossRefGoogle Scholar
  61. Pyle JL, Kavalali ET, Choi S, Tsien RW (1999) Visualization of synaptic activity in hippocampal slices with FM1-43 enabled by fluorescence quenching. Neuron 24:803–808CrossRefGoogle Scholar
  62. Raingo J, Khvotchev M, Liu P, Darios F, Li YC, Ramirez DM, Adachi M, Lemieux P, Toth K, Davletov B (2012) VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission. Nat Neurosci 15:738–745CrossRefGoogle Scholar
  63. Ramirez DM, Khvotchev M, Trauterman B, Kavalali ET (2012) Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron 73:121–134CrossRefGoogle Scholar
  64. Rizzoli SO, Jahn R (2007) Kiss-and-run, collapse and ‘readily retrievable’ vesicles. Traffic 8:1137–1144CrossRefGoogle Scholar
  65. Royle SJ, Granseth B, Odermatt B, Derevier A, Lagnado L (2008) Imaging pHluorin-based probes at hippocampal synapses. Methods Mol Biol 457:293–303CrossRefGoogle Scholar
  66. Ryan TA, Reuter H, Wendland B, Schweizer FE, Tsien RW, Smith SJ (1993) The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11:713–724CrossRefGoogle Scholar
  67. Saheki Y, De Camilli P (2012) Synaptic vesicle endocytosis. Cold Spring Harb Perspect Biol 4:a005645CrossRefGoogle Scholar
  68. Sakamoto H, Ariyoshi T, Kimpara N, Sugao K, Taiko I, Takikawa K, Asanuma D, Namiki S, Hirose K (2018) Synaptic weight set by Munc13-1 supramolecular assemblies. Nat Neurosci 21:41–49CrossRefGoogle Scholar
  69. Sankaranarayanan S, De Angelis D, Rothman JE, Ryan TA (2000) The use of pHluorins for optical measurements of presynaptic activity. Biophys J 79:2199–2208CrossRefGoogle Scholar
  70. Schikorski T (2014) Readily releasable vesicles recycle at the active zone of hippocampal synapses. Proc Natl Acad Sci USA 111:5415–5420CrossRefGoogle Scholar
  71. Shin W, Ge L, Arpino G, Villarreal SA, Hamid E, Liu H, Zhao WD, Wen PJ, Chiang HC, Wu LG (2018) Visualization of membrane pore in live cells reveals a dynamic-pore theory governing fusion and endocytosis. Cell 173(934–945):e12Google Scholar
  72. Siksou L, Triller A, Marty S (2009) An emerging view of presynaptic structure from electron microscopic studies. J Neurochem 108:1336–1342CrossRefGoogle Scholar
  73. Smith JE, Reese TS (1980) Use of aldehyde fixatives to determine the rate of synaptic transmitter release. J Exp Biol 89:19–29Google Scholar
  74. Soykan T, Kaempf N, Sakaba T, Vollweiter D, Goerdeler F, Puchkov D, Kononenko NL, Haucke V (2017) Synaptic vesicle endocytosis occurs on multiple timescales and is mediated by formin-dependent actin assembly. Neuron 93(854–866):e4Google Scholar
  75. Takei K, Mundigl O, Daniell L, De Camilli P (1996) The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin. J Cell Biol 133:1237–1250CrossRefGoogle Scholar
  76. Thomas P, Surprenant A, Almers W (1990) Cytosolic Ca2+, exocytosis, and endocytosis in single melanotrophs of the rat pituitary. Neuron 5:723–733CrossRefGoogle Scholar
  77. Villarreal S, Lee SH, Wu LG (2017) Measuring synaptic vesicle endocytosis in cultured hippocampal neurons. J Vis Exp.  https://doi.org/10.3791/55862 Google Scholar
  78. Voglmaier SM, Kam K, Yang H, Fortin DL, Hua Z, Nicoll RA, Edwards RH (2006) Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 51:71–84CrossRefGoogle Scholar
  79. Wang Y, Tang M (2018) Dysfunction of various organelles provokes multiple cell death after quantum dot exposure. Int J Nanomed 13:2729–2742CrossRefGoogle Scholar
  80. Watanabe S (2016) Flash-and-freeze: coordinating optogenetic stimulation with rapid freezing to visualize membrane dynamics at synapses with millisecond resolution. Front Synaptic Neurosci 8:24CrossRefGoogle Scholar
  81. Watanabe S, Punge A, Hollopeter G, Willig KI, Hobson RJ, Davis MW, Hell SW, Jorgensen EM (2010) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8:80–84CrossRefGoogle Scholar
  82. Watanabe S, Liu Q, Davis MW, Hollopeter G, Thomas N, Jorgensen NB, Jorgensen EM (2013a) Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions. eLife 2:e00723CrossRefGoogle Scholar
  83. Watanabe S, Rost BR, Camacho-Pérez M, Davis MW, Söhl-Kielczynski B, Rosenmund C, Jorgensen EM (2013b) Ultrafast endocytosis at mouse hippocampal synapses. Nature 504:242–247CrossRefGoogle Scholar
  84. Watanabe S, Trimbuch T, Camacho-Pérez M, Rost BR, Brokowski B, Söhl-Kielczynski B, Felies A, Davis MW, Rosenmund C, Jorgensen EM (2014) Clathrin regenerates synaptic vesicles from endosomes. Nature 515:228–233CrossRefGoogle Scholar
  85. Welzel O, Henkel AW, Stroebel AM, Jung J, Tischbirek CH, Ebert K, Kornhuber J, Rizzoli SO, Groemer TW (2011) Systematic heterogeneity of fractional vesicle pool sizes and release rates of hippocampal synapses. Biophys J 100:593–601CrossRefGoogle Scholar
  86. Wen PJ, Grenklo S, Arpino G, Tan X, Liao HS, Heureaux J, Peng SY, Chiang HC, Hamid E, Zhao WD, Shin W, Nareoja T, Evergren E, Jin Y, Karlsson R, Ebert SN, Jin A, Liu AP, Shupliakov O, Wu LG (2016) Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane. Nat Commun 7:12604CrossRefGoogle Scholar
  87. Wilhelm BG, Mandad S, Truckenbrodt S, Kröhnert K, Schäfer C, Rammner B, Koo SJ, Claßen GA, Krauss M, Haucke V (2014) Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344:1023–1028CrossRefGoogle Scholar
  88. Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935–939CrossRefGoogle Scholar
  89. Wong MY, Liu C, Wang SSH, Roquas ACF, Fowler SC, Kaeser PS (2018) Liprin-alpha3 controls vesicle docking and exocytosis at the active zone of hippocampal synapses. Proc Natl Acad Sci USA 115:2234–2239CrossRefGoogle Scholar
  90. Wu W, Wu LG (2007) Rapid bulk endocytosis and its kinetics of fission pore closure at a central synapse. Proc Natl Acad Sci USA 104:10234–10239CrossRefGoogle Scholar
  91. Wu Y, Yeh FL, Mao F, Chapman ER (2009) Biophysical characterization of styryl dye-membrane interactions. Biophys J 97:101–109CrossRefGoogle Scholar
  92. Wu L-G, Hamid E, Shin W, Chiang H-C (2014a) Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annu Rev Physiol 76:301–331CrossRefGoogle Scholar
  93. Wu X-S, Zhang Z, Zhao W-D, Wang D, Luo F, Wu L-G (2014b) Calcineurin is universally involved in vesicle endocytosis at neuronal and nonneuronal secretory cells. Cell Rep 7:982–988CrossRefGoogle Scholar
  94. Wu X-S, Lee SH, Sheng J, Zhang Z, Zhao W-D, Wang D, Jin Y, Charnay P, Ervasti JM, Wu L-G (2016) Actin is crucial for all kinetically distinguishable forms of endocytosis at synapses. Neuron 92:1020–1035CrossRefGoogle Scholar
  95. Yan M, Zhang Y, Qin H, Liu K, Guo M, Ge Y, Xu M, Sun Y, Zheng X (2016) Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress. Int J Nanomed 11:529–542Google Scholar
  96. Zhang Q, Cao Y-Q, Tsien RW (2007) Quantum dots provide an optical signal specific to full collapse fusion of synaptic vesicles. Proc Natl Acad Sci USA 104:17843–17848CrossRefGoogle Scholar
  97. Zhang Q, Li Y, Tsien RW (2009) The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 323:1448–1453CrossRefGoogle Scholar
  98. Zhao H, Kim Y, Park J, Park D, Lee SE, Chang I, Chang S (2014) SCAMP5 plays a critical role in synaptic vesicle endocytosis during high neuronal activity. J Neurosci 34:10085–10095CrossRefGoogle Scholar
  99. Zhao WD, Hamid E, Shin W, Wen PJ, Krystofiak ES, Villarreal SA, Chiang HC, Kachar B, Wu LG (2016) Hemi-fused structure mediates and controls fusion and fission in live cells. Nature 534:548–552CrossRefGoogle Scholar
  100. Zhu Y, Xu J, Heinemann SF (2009) Two pathways of synaptic vesicle retrieval revealed by single-vesicle imaging. Neuron 61:397–411CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2019

Authors and Affiliations

  • Yeonsun Jin
    • 1
  • Kyoung Hee Seo
    • 1
  • Hyun Myung Ko
    • 2
  • Tae Woo Jung
    • 3
  • Yoon Hee Chung
    • 4
  • Jong Hyuk Lee
    • 5
  • Hyun Ho Park
    • 1
  • Hyoung-Chun Kim
    • 6
  • Ji Hoon Jeong
    • 7
  • Sung Hoon Lee
    • 1
    Email author
  1. 1.College of PharmacyChung-Ang UniversitySeoulRepublic of Korea
  2. 2.Department of Life Science, College of Science and TechnologyWoosuk UniversityJincheonRepublic of Korea
  3. 3.Research Administration TeamSeoul National University Bundang HospitalSeongnamKorea
  4. 4.Department of Anatomy, College of MedicineChung-Ang UniversitySeoulRepublic of Korea
  5. 5.Department of Pharmaceutical Engineering, College of Life and Health ScienceHoseo UniversityAsanRepublic of Korea
  6. 6.Neuropsychopharmacology and Toxicology Program, College of PharmacyKangwon National UniversityChunchonRepublic of Korea
  7. 7.Department of Pharmacology, College of MedicineChung-Ang UniversitySeoulRepublic of Korea

Personalised recommendations