Peroxisomal dysfunction in neurodegenerative diseases

  • Doo Sin Jo
  • Dong-Hyung ChoEmail author


Peroxisomes and their (patho-)physiological importance in heath and disease have attracted increasing interest during last few decades. Together with mitochondria, peroxisomes comprise key metabolic platforms for oxidation of various fatty acids and redox regulation. In addition, peroxisomes contribute to bile acid, cholesterol, and plasmalogen biosynthesis. The importance of functional peroxisomes for cellular metabolism is demonstrated by the marked brain and systemic organ abnormalities occuring in peroxisome biogenesis disorders and peroxisomal enzyme deficiencies. Current evidences indicate that peroxisomal function is declined with aging, with peroxisomal dysfunction being linked to early onset of multiple age-related diseases including neurodegenerative diseases. Herein, we review recent progress toward understanding the physiological roles and pathological implications of peroxisomal dysfunctions, focusing on neurodegenerative disease.


Peroxisome Neurodegenerative disease Alzheimer’s disease Parkinson’s disease 



This research was supported by a Grant of the Korea–UK Collaborative Alzheimer’s Disease Research Project by Ministry of Health & Welfare, Republic of Korea (HI14C1913), and supported by National Research Foundation of Korea funded by the Ministry of Science & ICT (2017R1A2B4005501).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. Abdel-Khalik J, Yutuc E, Crick PJ, Gustafsson JA, Warner M, Roman G, Talbot K, Gray E, Griffiths WJ, Turner MR, Wang Y (2017) Defective cholesterol metabolism in amyotrophic lateral sclerosis. J Lipid Res 58:267–278CrossRefPubMedGoogle Scholar
  2. Agrawal G, Subramani S (2016) De novo peroxisome biogenesis: evolving concepts and conundrums. Biochem Biophys Acta 1863:892–901CrossRefPubMedGoogle Scholar
  3. Amaral A, Castillo J, Estanyol JM, Ballesca JL, Ramalho-Santos J, Oliva R (2013) Human sperm tail proteome suggests new endogenous metabolic pathways. Mol Cell Proteom 12:330–342CrossRefGoogle Scholar
  4. Anding AL, Baehrecke EH (2017) Cleaning house: selective autophagy of organelles. Dev Cell 41:10–22CrossRefPubMedPubMedCentralGoogle Scholar
  5. Antonenkov VD, Grunau S, Ohlmeier S, Hiltunen JK (2010) Peroxisomes are oxidative organelles. Antioxid Redox Signal 13:525–537CrossRefPubMedGoogle Scholar
  6. Astarita G, Jung KM, Berchtold NC, Nguyen VQ, Gillen DL, Head E, Cotman CW, Piomelli D (2010) Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in Alzheimer’s disease. PLoS ONE 5:e12538CrossRefPubMedPubMedCentralGoogle Scholar
  7. Aubourg P, Wanders R (2013) Peroxisomal disorders. Handb Clin Neurol 113:1593–1609CrossRefPubMedGoogle Scholar
  8. Barberger-Gateau P, Letenneur L, Deschamps V, Peres K, Dartigues JF, Renaud S (2002) Fish, meat, and risk of dementia: cohort study. BMJ (Clin Res ed.) 325:932–933CrossRefGoogle Scholar
  9. Bar-On P, Crews L, Koob AO, Mizuno H, Adame A, Spencer B, Masliah E (2008) Statins reduce neuronal alpha-synuclein aggregation in in vitro models of Parkinson’s disease. J Neurochem 105:1656–1667CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bascoul-Colombo C, Guschina IA, Maskrey BH, Good M, O’Donnell VB, Harwood JL (2016) Dietary DHA supplementation causes selective changes in phospholipids from different brain regions in both wild type mice and the Tg2576 mouse model of Alzheimer’s disease. Biochem Biophys Acta 1861:524–537PubMedGoogle Scholar
  11. Beel AJ, Sakakura M, Barrett PJ, Sanders CR (2010) Direct binding of cholesterol to the amyloid precursor protein: an important interaction in lipid-Alzheimer’s disease relationships? Biochem Biophys Acta 1801:975–982PubMedGoogle Scholar
  12. Belkouch M, Hachem M, Elgot A, Van Lo A, Picq M, Guichardant M, Lagarde M, Bernoud-Hubac N (2016) The pleiotropic effects of omega-3 docosahexaenoic acid on the hallmarks of Alzheimer’s disease. J Nutr Biochem 38:1–11CrossRefPubMedGoogle Scholar
  13. Blandini F, Armentero MT (2012) Animal models of Parkinson’s disease. FEBS J 279:1156–1166CrossRefPubMedGoogle Scholar
  14. Bolner A, Micciolo R, Bosello O, Nordera GP (2016) A panel of oxidative stress markers in Parkinson’s disease. Clin Lab 62:105–112CrossRefPubMedGoogle Scholar
  15. Bonekamp NA, Volkl A, Fahimi HD, Schrader M (2009) Reactive oxygen species and peroxisomes: struggling for balance. BioFactors (Oxford, England) 35:346–355CrossRefGoogle Scholar
  16. Bourre JM (2004) Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing. J Nutr Health Aging 8:163–174PubMedGoogle Scholar
  17. Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128:617–630CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bowers WE (1998) Christian de Duve and the discovery of lysosomes and peroxisomes. Trends Cell Biol 8:330–333CrossRefPubMedGoogle Scholar
  19. Braverman NE, Moser AB (2012) Functions of plasmalogen lipids in health and disease. Biochem Biophys Acta 1822:1442–1452PubMedGoogle Scholar
  20. Braverman NE, D’Agostino MD, Maclean GE (2013) Peroxisome biogenesis disorders: biological, clinical and pathophysiological perspectives. Dev Disabil Res Rev 17:187–196CrossRefPubMedGoogle Scholar
  21. Breidert T, Callebert J, Heneka MT, Landreth G, Launay JM, Hirsch EC (2002) Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson’s disease. J Neurochem 82:615–624CrossRefPubMedGoogle Scholar
  22. Brites P, Waterham HR, Wanders RJ (2004) Functions and biosynthesis of plasmalogens in health and disease. Biochem Biophys Acta 1636:219–231PubMedGoogle Scholar
  23. Calder PC (2006) n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83:1505s–1519sCrossRefPubMedGoogle Scholar
  24. Calderon F, Kim HY (2004) Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J Neurochem 90:979–988CrossRefPubMedGoogle Scholar
  25. Carrillo-Mora P, Luna R, Colin-Barenque L (2014) Amyloid beta: multiple mechanisms of toxicity and only some protective effects? Oxid Med Cell Longev 2014:795375CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cerri S, Blandini F (2018) Role of autophagy in Parkinson’s disease. Curr Med Chem. CrossRefPubMedGoogle Scholar
  27. Chaturvedi RK, Beal MF (2008) PPAR: a therapeutic target in Parkinson’s disease. J Neurochem 106:506–518CrossRefPubMedGoogle Scholar
  28. Cheng D, Kim WS, Garner B (2008) Regulation of alpha-synuclein expression by liver X receptor ligands in vitro. NeuroReport 19:1685–1689CrossRefPubMedGoogle Scholar
  29. Cheng D, Jenner AM, Shui G, Cheong WF, Mitchell TW, Nealon JR, Kim WS, McCann H, Wenk MR, Halliday GM, Garner B (2011) Lipid pathway alterations in Parkinson’s disease primary visual cortex. PLoS ONE 6:e17299CrossRefPubMedPubMedCentralGoogle Scholar
  30. Chen-Plotkin AS, Albin R, Alcalay R, Babcock D, Bajaj V, Bowman D, Buko A, Cedarbaum J, Chelsky D, Cookson, Dawson TM, Dewey R, Foroud T, Frasier M, German D, Gwinn K, Huang X, Kopil C, Kremer T, Lasch S, Marek K, Marto JA, Merchant K, Mollenhauer B, Naito A, Potashkin J, Reimer A, Rosenthal LS, Saunders-Pullman R, Scherzer CR, Sherer T, Singleton A, Sutherland M, Thiele I, van der Brug M, Van Keuren-Jensen K, Vaillancourt D, Walt D, West A, Zhang J (2018) Finding useful biomarkers for Parkinson’s disease. Sci Transl Med. CrossRefPubMedGoogle Scholar
  31. Cherubini A, Andres-Lacueva C, Martin A, Lauretani F, Iorio AD, Bartali B, Corsi A, Bandinelli S, Mattson MP, Ferrucci L (2007) Low plasma N-3 fatty acids and dementia in older persons: the InCHIANTI study. J Gerontol Series A 62:1120–1126CrossRefGoogle Scholar
  32. Chinetti G, Fruchart JC, Staels B (2000) Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 49:497–505CrossRefPubMedGoogle Scholar
  33. Cho DH, Kim YS, Jo DS, Choe SK, Jo EK (2018) Pexophagy: molecular mechanisms and implications for health and diseases. Mol Cells 41:55–64PubMedPubMedCentralGoogle Scholar
  34. Chu BB, Liao YC, Qi W, Xie C, Du X, Wang J, Yang H, Miao HH, Li BL, Song BL (2015) Cholesterol transport through lysosome-peroxisome membrane contacts. Cell 161:291–306CrossRefPubMedGoogle Scholar
  35. Cipolla CM, Lodhi IJ (2017) Peroxisomal dysfunction in age-related diseases. Trends Endocrinol Metabol 28:297–308CrossRefGoogle Scholar
  36. Congdon EE, Sigurdsson EM (2018) Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol 14:399–415CrossRefPubMedGoogle Scholar
  37. Conquer JA, Tierney MC, Zecevic J, Bettger WJ, Fisher RH (2000) Fatty acid analysis of blood plasma of patients with Alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids 35:1305–1312CrossRefPubMedGoogle Scholar
  38. Cordeiro RM (2014) Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation. Biochem Biophys Acta 1838:438–444CrossRefPubMedGoogle Scholar
  39. Costello JL, Castro IG, Hacker C, Schrader TA, Metz J, Zeuschner D, Azadi AS, Godinho LF, Costina V, Findeisen P, Manner A, Islinger M, Schrader M (2017) ACBD5 and VAPB mediate membrane associations between peroxisomes and the ER. J Cell Biol 216:331–342CrossRefPubMedPubMedCentralGoogle Scholar
  40. Crane DI (2014) Revisiting the neuropathogenesis of Zellweger syndrome. Neurochem Int 69:1–8CrossRefPubMedGoogle Scholar
  41. Deb R, Nagotu S (2017) Versatility of peroxisomes: an evolving concept. Tissue Cell 49:209–226CrossRefPubMedGoogle Scholar
  42. Deng BQ, Luo Y, Kang X, Li CB, Morisseau C, Yang J, Lee KSS, Huang J, Hu DY, Wu MY, Peng A, Hammock BD, Liu JY (2017) Epoxide metabolites of arachidonate and docosahexaenoate function conversely in acute kidney injury involved in GSK3beta signaling. Proc Natl Acad Sci USA 114:12608–12613CrossRefPubMedGoogle Scholar
  43. Deori NM, Kale A, Maurya PK, Nagotu S (2018) Peroxisomes: role in cellular ageing and age related disorders. Biogerontology 19:303–324CrossRefPubMedGoogle Scholar
  44. Di Cara F, Sheshachalam A, Braverman NE, Rachubinski RA, Simmonds AJ (2017) Peroxisome-mediated metabolism is required for immune response to microbial infection. Immunity 47:93–106.e107CrossRefPubMedGoogle Scholar
  45. Di Paolo G, Kim TW (2011) Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat Rev Neurosci 12:284–296CrossRefPubMedPubMedCentralGoogle Scholar
  46. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinson’s Dis 3:461–491Google Scholar
  47. Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, Chen ZJ, Whelan SP, Fransen M, Nibert ML, Superti-Furga G, Kagan JC (2010) Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141:668–681CrossRefPubMedPubMedCentralGoogle Scholar
  48. Doria M, Maugest L, Moreau T, Lizard G, Vejux A (2016) Contribution of cholesterol and oxysterols to the pathophysiology of Parkinson’s disease. Free Radic Biol Med 101:393–400CrossRefPubMedGoogle Scholar
  49. Dragonas C, Bertsch T, Sieber CC, Brosche T (2009) Plasmalogens as a marker of elevated systemic oxidative stress in Parkinson’s disease. Clin Chem Lab Med 47:894–897CrossRefPubMedGoogle Scholar
  50. Du J, Zhang L, Liu S, Zhang C, Huang X, Li J, Zhao N, Wang Z (2009) PPARgamma transcriptionally regulates the expression of insulin-degrading enzyme in primary neurons. Biochem Biophys Res Commun 383:485–490CrossRefPubMedGoogle Scholar
  51. Du Y, Wen Y, Guo X, Hao J, Wang W, He A, Fan Q, Li P, Liu L, Liang X, Zhang F (2018) A genome-wide expression association analysis identifies genes and pathways associated with amyotrophic lateral sclerosis. Cell Mol Neurobiol 38:635–639CrossRefPubMedGoogle Scholar
  52. Dubois V, Eeckhoute J, Lefebvre P, Staels B (2017) Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J Clin Investig 127:1202–1214CrossRefPubMedGoogle Scholar
  53. Fabelo N, Martin V, Santpere G, Marin R, Torrent L, Ferrer I, Diaz M (2011) Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease. Mol Medicine (Cambridge, Mass.) 17:1107–1118Google Scholar
  54. Facciotti F, Ramanjaneyulu GS, Lepore M, Sansano S, Cavallari M, Kistowska M, Forss-Petter S, Ni G, Colone A, Singhal A, Berger J, Xia C, Mori L, De Libero G (2012) Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus. Nat Immunol 13:474–480CrossRefPubMedGoogle Scholar
  55. Fan J, Li X, Issop L, Culty M, Papadopoulos V (2016) ACBD2/ECI2-mediated peroxisome-mitochondria interactions in leydig cell steroid biosynthesis. Mol Endocrinol (Baltimore, Md.) 30:763–782CrossRefGoogle Scholar
  56. Fantini J, Carlus D, Yahi N (2011) The fusogenic tilted peptide (67-78) of alpha-synuclein is a cholesterol binding domain. Biochem Biophys Acta 1808:2343–2351CrossRefPubMedGoogle Scholar
  57. Farr RL, Lismont C, Terlecky SR, Fransen M (2016) Peroxisome biogenesis in mammalian cells: the impact of genes and environment. Biochem Biophys Acta 1863:1049–1060CrossRefPubMedGoogle Scholar
  58. Faust PL, Kovacs WJ (2014) Cholesterol biosynthesis and ER stress in peroxisome deficiency. Biochimie 98:75–85CrossRefPubMedGoogle Scholar
  59. Ferdinandusse S, Denis S, Faust PL, Wanders RJ (2009) Bile acids: the role of peroxisomes. J Lipid Res 50:2139–2147CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ferdinandusse S, Jimenez-Sanchez G, Koster J, Denis S, Van Roermund CW, Silva-Zolezzi I, Moser AB, Visser WF, Gulluoglu M, Durmaz O, Demirkol M, Waterham HR, Gokcay G, Wanders RJ, Valle D (2015) A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Hum Mol Genet 24:361–370CrossRefPubMedGoogle Scholar
  61. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247CrossRefPubMedGoogle Scholar
  62. Fox MA, Nieuwesteeg MA, Willson JA, Cepeda M, Damjanovski S (2014) Knockdown of Pex11beta reveals its pivotal role in regulating peroxisomal genes, numbers, and ROS levels in Xenopus laevis A6 cells. In Vitro Cell Dev Biol Anim 50:340–349CrossRefPubMedGoogle Scholar
  63. Fransen M, Nordgren M, Wang B, Apanasets O (2012) Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochem Biophys Acta 1822:1363–1373PubMedGoogle Scholar
  64. Fransen M, Lismont C, Walton P (2017) The peroxisome-mitochondria connection: how and why? Int J Mol Sci 18(6):1126CrossRefPubMedCentralGoogle Scholar
  65. Frieden C, Garai K (2012) Structural differences between apoE3 and apoE4 may be useful in developing therapeutic agents for Alzheimer’s disease. Proc Natl Acad Sci USA 109:8913–8918CrossRefPubMedGoogle Scholar
  66. Giacobini E, Gold G (2013) Alzheimer disease therapy–moving from amyloid-beta to tau. Nat Rev Neurol 9:677–686CrossRefPubMedGoogle Scholar
  67. Ginsberg L, Rafique S, Xuereb JH, Rapoport SI, Gershfeld NL (1995) Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer’s disease brain. Brain Res 698:223–226CrossRefPubMedGoogle Scholar
  68. Graham WV, Bonito-Oliva A, Sakmar TP (2017) Update on Alzheimer’s disease therapy and prevention strategies. Annu Rev Med 68:413–430CrossRefPubMedGoogle Scholar
  69. Gray E, Rice C, Hares K, Redondo J, Kemp K, Williams M, Brown A, Scolding N, Wilkins A (2014) Reductions in neuronal peroxisomes in multiple sclerosis grey matter. Mult Scler (Houndmills, Basingstoke, England) 20:651–659CrossRefGoogle Scholar
  70. Green KN, Martinez-Coria H, Khashwji H, Hall EB, Yurko-Mauro KA, Ellis L, LaFerla FM (2007) Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-beta and tau pathology via a mechanism involving presenilin 1 levels. J Neurosci 27:4385–4395CrossRefPubMedGoogle Scholar
  71. Grimm MO, Grimm HS, Tomic I, Beyreuther K, Hartmann T, Bergmann C (2008) Independent inhibition of Alzheimer disease beta- and gamma-secretase cleavage by lowered cholesterol levels. J Biol Chem 283:11302–11311CrossRefPubMedGoogle Scholar
  72. Gudala K, Bansal D, Muthyala H (2013) Role of serum cholesterol in Parkinson’s disease: a meta-analysis of evidence. J Parkinson’s Dis 3:363–370Google Scholar
  73. Guimaraes SC, Schuster M, Bielska E, Dagdas G, Kilaru S, Meadows BR, Schrader M, Steinberg G (2015) Peroxisomes, lipid droplets, and endoplasmic reticulum “hitchhike” on motile early endosomes. J Cell Biol 211:945–954CrossRefPubMedPubMedCentralGoogle Scholar
  74. Guo X, Song W, Chen K, Chen X, Zheng Z, Cao B, Huang R, Zhao B, Wu Y, Shang HF (2015) The serum lipid profile of Parkinson’s disease patients: a study from China. Int J Neurosci 125:838–844CrossRefPubMedGoogle Scholar
  75. Hashimoto M, Shahdat HM, Katakura M, Tanabe Y, Gamoh S, Miwa K, Shimada T, Shido O (2009) Effects of docosahexaenoic acid on in vitro amyloid beta peptide 25-35 fibrillation. Biochem Biophys Acta 1791:289–296PubMedGoogle Scholar
  76. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405CrossRefPubMedPubMedCentralGoogle Scholar
  77. Hernandez DG, Reed X, Singleton AB (2016) Genetics in Parkinson disease: mendelian versus non-mendelian inheritance. J Neurochem 139(Suppl 1):59–74CrossRefPubMedPubMedCentralGoogle Scholar
  78. Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A (2003) The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 27:35–64CrossRefPubMedGoogle Scholar
  79. Hoefler G, Paschke E, Hoefler S, Moser AB, Moser HW (1991) Photosensitized killing of cultured fibroblasts from patients with peroxisomal disorders due to pyrene fatty acid-mediated ultraviolet damage. J Clin Investig 88:1873–1879CrossRefPubMedGoogle Scholar
  80. Hohn A, Grune T (2013) Lipofuscin: formation, effects and role of macroautophagy. Redox Biol 1:140–144CrossRefPubMedPubMedCentralGoogle Scholar
  81. Hooijmans CR, Van der Zee CE, Dederen PJ, Brouwer KM, Reijmer YD, van Groen T, Broersen LM, Lutjohann D, Heerschap A, Kiliaan AJ (2009) DHA and cholesterol containing diets influence Alzheimer-like pathology, cognition and cerebral vasculature in APPswe/PS1dE9 mice. Neurobiol Dis 33:482–498CrossRefPubMedGoogle Scholar
  82. Hossain S, Hashimoto M, Katakura M, Miwa K, Shimada T, Shido O (2009) Mechanism of docosahexaenoic acid-induced inhibition of in vitro Abeta1-42 fibrillation and Abeta1-42-induced toxicity in SH-S5Y5 cells. J Neurochem 111:568–579CrossRefPubMedGoogle Scholar
  83. Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–2303CrossRefPubMedPubMedCentralGoogle Scholar
  84. Hua R, Cheng D, Coyaud E, Freeman S, Di Pietro E, Wang Y, Vissa A, Yip CM, Fairn GD, Braverman N, Brumell JH, Trimble WS, Raught B, Kim PK (2017) VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis. J Cell Biol 216:367–377CrossRefPubMedPubMedCentralGoogle Scholar
  85. Hwang O (2013) Role of oxidative stress in Parkinson’s disease. Exp Neurobiol 22:11–17CrossRefPubMedPubMedCentralGoogle Scholar
  86. Hwang I, Lee J, Huh JY, Park J, Lee HB, Ho YS, Ha H (2012) Catalase deficiency accelerates diabetic renal injury through peroxisomal dysfunction. Diabetes 61:728–738CrossRefPubMedPubMedCentralGoogle Scholar
  87. Islinger M, Cardoso MJ, Schrader M (2010) Be different–the diversity of peroxisomes in the animal kingdom. Biochem Biophys Acta 1803:881–897CrossRefPubMedGoogle Scholar
  88. Islinger M, Voelkl A, Fahimi HD, Schrader M (2018) The peroxisome: an update on mysteries 2.0. Histochem Cell Biol 150:443–471CrossRefPubMedPubMedCentralGoogle Scholar
  89. Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650CrossRefPubMedGoogle Scholar
  90. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S36 discussion S36-28 CrossRefPubMedGoogle Scholar
  91. Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47:S161–170CrossRefPubMedGoogle Scholar
  92. Jiang T, Sun Q, Chen S (2016) Oxidative stress: a major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog Neurobiol 147:1–19CrossRefPubMedGoogle Scholar
  93. Kalmijn S, Launer LJ, Ott A, Witteman JC, Hofman A, Breteler MM (1997) Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann Neurol 42:776–782CrossRefPubMedGoogle Scholar
  94. Kamat PK, Kalani A, Rai S, Swarnkar S, Tota S, Nath C, Tyagi N (2016) Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: understanding the therapeutics strategies. Mol Neurobiol 53:648–661CrossRefPubMedGoogle Scholar
  95. Kim JY, Jang A, Reddy R, Yoon WH, Jankowsky JL (2016) Neuronal overexpression of human VAPB slows motor impairment and neuromuscular denervation in a mouse model of ALS. Hum Mol Genet 25:4661–4673CrossRefPubMedPubMedCentralGoogle Scholar
  96. Koch J, Pranjic K, Huber A, Ellinger A, Hartig A, Kragler F, Brocard C (2010) PEX11 family members are membrane elongation factors that coordinate peroxisome proliferation and maintenance. J Cell Sci 123:3389–3400CrossRefPubMedGoogle Scholar
  97. Koob AO, Ubhi K, Paulsson JF, Kelly J, Rockenstein E, Mante M, Adame A, Masliah E (2010) Lovastatin ameliorates alpha-synuclein accumulation and oxidation in transgenic mouse models of alpha-synucleinopathies. Exp Neurol 221:267–274CrossRefPubMedGoogle Scholar
  98. Kou J, Kovacs GG, Hoftberger R, Kulik W, Brodde A, Forss-Petter S, Honigschnabl S, Gleiss A, Brugger B, Wanders R, Just W, Budka H, Jungwirth S, Fischer P, Berger J (2011) Peroxisomal alterations in Alzheimer’s disease. Acta Neuropathol 122:271–283CrossRefPubMedPubMedCentralGoogle Scholar
  99. Kovacs WJ, Tape KN, Shackelford JE, Duan X, Kasumov T, Kelleher JK, Brunengraber H, Krisans SK (2007) Localization of the pre-squalene segment of the isoprenoid biosynthetic pathway in mammalian peroxisomes. Histochem Cell Biol 127:273–290CrossRefPubMedGoogle Scholar
  100. LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8:499–509CrossRefPubMedGoogle Scholar
  101. Landreth G (2007) Therapeutic use of agonists of the nuclear receptor PPARgamma in Alzheimer’s disease. Curr Alzheimer Res 4:159–164CrossRefPubMedGoogle Scholar
  102. Lang A, John Peter AT, Kornmann B (2015) ER-mitochondria contact sites in yeast: beyond the myths of ERMES. Curr Opin Cell Biol 35:7–12CrossRefPubMedGoogle Scholar
  103. Legakis JE, Koepke JI, Jedeszko C, Barlaskar F, Terlecky LJ, Edwards HJ, Walton PA, Terlecky SR (2002) Peroxisome senescence in human fibroblasts. Mol Biol Cell 13:4243–4255CrossRefPubMedPubMedCentralGoogle Scholar
  104. Lim SY, Suzuki H (2000) Intakes of dietary docosahexaenoic acid ethyl ester and egg phosphatidylcholine improve maze-learning ability in young and old mice. J Nutr 130:1629–1632CrossRefPubMedGoogle Scholar
  105. Lizard G, Rouaud O, Demarquoy J, Cherkaoui-Malki M, Iuliano L (2012) Potential roles of peroxisomes in Alzheimer’s disease and in dementia of the Alzheimer’s type. J Alzheimer’s Dis 29:241–254CrossRefGoogle Scholar
  106. Lodhi IJ, Wei X, Yin L, Feng C, Adak S, Abou-Ezzi G, Hsu FF, Link DC, Semenkovich CF (2015) Peroxisomal lipid synthesis regulates inflammation by sustaining neutrophil membrane phospholipid composition and viability. Cell Metab 21:51–64CrossRefPubMedPubMedCentralGoogle Scholar
  107. Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Investig 115:2774–2783CrossRefPubMedGoogle Scholar
  108. Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, Chen PP, Hudspeth B, Chen C, Zhao Y, Vinters HV, Frautschy SA, Cole GM (2009) Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29:9078–9089CrossRefPubMedPubMedCentralGoogle Scholar
  109. Marchetti DP, Donida B, Jacques CE, Deon M, Hauschild TC, Koehler-Santos P, de Moura Coelho D, Coitinho AS, Jardim LB, Vargas CR (2018) Inflammatory profile in X-linked adrenoleukodystrophy patients: understanding disease progression. J Cell Biochem 119:1223–1233CrossRefPubMedGoogle Scholar
  110. Martin MG, Pfrieger F, Dotti CG (2014) Cholesterol in brain disease: sometimes determinant and frequently implicated. EMBO Rep 15:1036–1052CrossRefPubMedPubMedCentralGoogle Scholar
  111. Marwarha G, Rhen T, Schommer T, Ghribi O (2011) The oxysterol 27-hydroxycholesterol regulates alpha-synuclein and tyrosine hydroxylase expression levels in human neuroblastoma cells through modulation of liver X receptors and estrogen receptors–relevance to Parkinson’s disease. J Neurochem 119:1119–1136CrossRefPubMedPubMedCentralGoogle Scholar
  112. Mattiazzi Usaj M, Brloznik M, Kaferle P, Zitnik M, Wolinski H, Leitner F, Kohlwein SD, Zupan B, Petrovic U (2015) Genome-wide localization study of yeast Pex11 identifies peroxisome-mitochondria interactions through the ERMES complex. J Mol Biol 427:2072–2087CrossRefPubMedPubMedCentralGoogle Scholar
  113. McGuinness MC, Griffin DE, Raymond GV, Washington CA, Moser HW, Smith KD (1995) Tumor necrosis factor-alpha and X-linked adrenoleukodystrophy. J Neuroimmunol 61:161–169CrossRefPubMedGoogle Scholar
  114. Mitchell J, Paul P, Chen HJ, Morris A, Payling M, Falchi M, Habgood J, Panoutsou S, Winkler S, Tisato V, Hajitou A, Smith B, Vance C, Shaw C, Mazarakis ND, de Belleroche J (2010) Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase. Proc Natl Acad Sci USA 107:7556–7561CrossRefPubMedGoogle Scholar
  115. Miville-Godbout E, Bourque M, Morissette M, Al-Sweidi S, Smith T, Mochizuki A, Senanayake V, Jayasinghe D, Wang L, Goodenowe D, Di Paolo T (2016) Plasmalogen augmentation reverses striatal dopamine loss in MPTP mice. PLoS ONE 11:e0151020CrossRefPubMedPubMedCentralGoogle Scholar
  116. Miville-Godbout E, Bourque M, Morissette M, Al-Sweidi S, Smith T, Jayasinghe D, Ritchie S, Di Paolo T (2017) Plasmalogen precursor mitigates striatal dopamine loss in MPTP mice. Brain Res 1674:70–76CrossRefPubMedGoogle Scholar
  117. Miyazaki C, Saitoh M, Itoh M, Yamashita S, Miyagishi M, Takashima S, Moser AB, Iwamori M, Mizuguchi M (2013) Altered phospholipid molecular species and glycolipid composition in brain, liver and fibroblasts of Zellweger syndrome. Neurosci Lett 552:71–75CrossRefPubMedGoogle Scholar
  118. Morita M, Kurochkin IV, Motojima K, Goto S, Takano T, Okamura S, Sato R, Yokota S, Imanaka T (2000) Insulin-degrading enzyme exists inside of rat liver peroxisomes and degrades oxidized proteins. Cell Struct Funct 25:309–315CrossRefPubMedGoogle Scholar
  119. Murphy S, Martin S, Parton RG (2009) Lipid droplet-organelle interactions; sharing the fats. Biochem Biophys Acta 1791:441–447PubMedGoogle Scholar
  120. Oku M, Sakai Y (2010) Peroxisomes as dynamic organelles: autophagic degradation. FEBS J 277:3289–3294CrossRefPubMedGoogle Scholar
  121. Pan Y, Khalil H, Nicolazzo JA (2015) The impact of docosahexaenoic acid on Alzheimer’s disease: is there a role of the blood-brain barrier? Curr Clin Pharmacol 10:222–241CrossRefPubMedGoogle Scholar
  122. Paul P, de Belleroche J (2012) The role of D-amino acids in amyotrophic lateral sclerosis pathogenesis: a review. Amino Acids 43:1823–1831CrossRefPubMedGoogle Scholar
  123. Pomatto LC, Raynes R, Davies KJ (2017) The peroxisomal Lon protease LonP2 in aging and disease: functions and comparisons with mitochondrial Lon protease LonP1. Biol Rev Camb Philos Soc 92:739–753CrossRefPubMedGoogle Scholar
  124. Popp J, Meichsner S, Kolsch H, Lewczuk P, Maier W, Kornhuber J, Jessen F, Lutjohann D (2013) Cerebral and extracerebral cholesterol metabolism and CSF markers of Alzheimer’s disease. Biochem Pharmacol 86:37–42CrossRefPubMedGoogle Scholar
  125. Prasanthi JR, Huls A, Thomasson S, Thompson A, Schommer E, Ghribi O (2009) Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on beta-amyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells. Mol Neurodegener 4:1CrossRefPubMedPubMedCentralGoogle Scholar
  126. Prinz WA (2014) Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. J Cell Biol 205:759–769CrossRefPubMedPubMedCentralGoogle Scholar
  127. Puspita L, Chung SY, Shim JW (2017) Oxidative stress and cellular pathologies in Parkinson’s disease. Mol Brain 10:53CrossRefPubMedPubMedCentralGoogle Scholar
  128. Quinn LP, Crook B, Hows ME, Vidgeon-Hart M, Chapman H, Upton N, Medhurst AD, Virley DJ (2008) The PPARgamma agonist pioglitazone is effective in the MPTP mouse model of Parkinson’s disease through inhibition of monoamine oxidase B. Br J Pharmacol 154:226–233CrossRefPubMedPubMedCentralGoogle Scholar
  129. Ramsay RR, Zammit VA (2004) Carnitine acyltransferases and their influence on CoA pools in health and disease. Mol Aspects Med 25:475–493CrossRefPubMedGoogle Scholar
  130. Robson LG, Dyall S, Sidloff D, Michael-Titus AT (2010) Omega-3 polyunsaturated fatty acids increase the neurite outgrowth of rat sensory neurones throughout development and in aged animals. Neurobiol Aging 31:678–687CrossRefPubMedGoogle Scholar
  131. Sacchi S, Cappelletti P, Murtas G (2018) Biochemical properties of human D-amino acid oxidase variants and their potential significance in pathologies. Front Mol Biosci 5:55CrossRefPubMedPubMedCentralGoogle Scholar
  132. Sandalio LM, Romero-Puertas MC (2015) Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks. Ann Bot 116:475–485CrossRefPubMedPubMedCentralGoogle Scholar
  133. Schrader M, Godinho LF, Costello JL, Islinger M (2015) The different facets of organelle interplay-an overview of organelle interactions. Front Cell Dev Biol 3:56CrossRefPubMedPubMedCentralGoogle Scholar
  134. Shadfar S, Hwang CJ, Lim MS, Choi DY, Hong JT (2015) Involvement of inflammation in Alzheimer’s disease pathogenesis and therapeutic potential of anti-inflammatory agents. Arch Pharmacal Res 38:2106–2119CrossRefGoogle Scholar
  135. Shai N, Yifrach E, van Roermund CWT, Cohen N, Bibi C, IJ L, Cavellini L, Meurisse J, Schuster R, Zada L, Mari MC, Reggiori FM, Hughes AL, Escobar-Henriques M, Cohen MM, Waterham HR, Wanders RJA, Schuldiner M, Zalckvar E (2018) Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact. Nat Commun 9:1761CrossRefPubMedPubMedCentralGoogle Scholar
  136. Sheykhansari S, Kozielski K, Bill J, Sitti M, Gemmati D, Zamboni P, Singh AV (2018) Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review. Cell Death Dis 9:348CrossRefPubMedPubMedCentralGoogle Scholar
  137. Soderberg M, Edlund C, Kristensson K, Dallner G (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26:421–425CrossRefPubMedGoogle Scholar
  138. Sugiura A, Mattie S, Prudent J, McBride HM (2017) Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature 542:251–254CrossRefPubMedGoogle Scholar
  139. Tan LC, Methawasin K, Tan EK, Tan JH, Au WL, Yuan JM, Koh WP (2016) Dietary cholesterol, fats and risk of Parkinson’s disease in the Singapore Chinese Health Study. J Neurol Neurosurg Psychiatry 87:86–92PubMedGoogle Scholar
  140. Thenganatt MA, Jankovic J (2014) Parkinson disease subtypes. JAMA Neurol 71:499–504CrossRefPubMedGoogle Scholar
  141. Trompier D, Vejux A, Zarrouk A, Gondcaille C, Geillon F, Nury T, Savary S, Lizard G (2014) Brain peroxisomes. Biochimie 98:102–110CrossRefPubMedGoogle Scholar
  142. Tully AM, Roche HM, Doyle R, Fallon C, Bruce I, Lawlor B, Coakley D, Gibney MJ (2003) Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer’s disease: a case-control study. Br J Nutr 89:483–489CrossRefPubMedGoogle Scholar
  143. Walbrecq G, Wang B, Becker S, Hannotiau A, Fransen M, Knoops B (2015) Antioxidant cytoprotection by peroxisomal peroxiredoxin-5. Free Radic Biol Med 84:215–226CrossRefPubMedGoogle Scholar
  144. Wanders RJ (2014) Metabolic functions of peroxisomes in health and disease. Biochimie 98:36–44CrossRefPubMedGoogle Scholar
  145. Wanders RJ, Waterham HR, Ferdinandusse S (2015) Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front Cell Dev Biol 3:83PubMedGoogle Scholar
  146. Wang W, Shinto L, Connor WE, Quinn JF (2008) Nutritional biomarkers in Alzheimer’s disease: the association between carotenoids, n-3 fatty acids, and dementia severity. J Alzheimer’s Dis 13:31–38CrossRefGoogle Scholar
  147. Wang X, Wang Z, Liu JZ, Hu JX, Chen HL, Li WL, Hai CX (2011) Double antioxidant activities of rosiglitazone against high glucose-induced oxidative stress in hepatocyte. Toxicol In Vitro 25:839–847CrossRefPubMedGoogle Scholar
  148. Wang S, Horn PJ, Liou LC, Muggeridge MI, Zhang Z, Chapman KD, Witt SN (2013) A peroxisome biogenesis deficiency prevents the binding of alpha-synuclein to lipid droplets in lipid-loaded yeast. Biochem Biophys Res Commun 438:452–456CrossRefPubMedPubMedCentralGoogle Scholar
  149. Williams C, Opalinski L, Landgraf C, Costello J, Schrader M, Krikken AM, Knoops K, Kram AM, Volkmer R, van der Klei IJ (2015) The membrane remodeling protein Pex11p activates the GTPase Dnm1p during peroxisomal fission. Proc Natl Acad Sci USA 112:6377–6382CrossRefPubMedGoogle Scholar
  150. Wolozin B, Wang SW, Li NC, Lee A, Lee TA, Kazis LE (2007) Simvastatin is associated with a reduced incidence of dementia and Parkinson’s disease. BMC Med 5:20CrossRefPubMedPubMedCentralGoogle Scholar
  151. Xiao Z, Wang J, Chen W, Wang P, Zeng H, Chen W (2012) Association studies of several cholesterol-related genes (ABCA1, CETP and LIPC) with serum lipids and risk of Alzheimer’s disease. Lipids Health Dis 11:163CrossRefPubMedPubMedCentralGoogle Scholar
  152. Xu Z, Asahchop EL, Branton WG, Gelman BB, Power C, Hobman TC (2017) MicroRNAs upregulated during HIV infection target peroxisome biogenesis factors: implications for virus biology, disease mechanisms and neuropathology. PLoS Pathog 13:e1006360CrossRefPubMedPubMedCentralGoogle Scholar
  153. Xue-Shan Z, Juan P, Qi W, Zhong R, Li-Hong P, Zhi-Han T, Zhi-Sheng J, Gui-Xue W, Lu-Shan L (2016) Imbalanced cholesterol metabolism in Alzheimer’s disease. Clin Chim Acta 456:107–114CrossRefPubMedGoogle Scholar
  154. Ye S, Huang Y, Mullendorff K, Dong L, Giedt G, Meng EC, Cohen FE, Kuntz ID, Weisgraber KH, Mahley RW (2005) Apolipoprotein (apo) E4 enhances amyloid beta peptide production in cultured neuronal cells: apoE structure as a potential therapeutic target. Proc Natl Acad Sci USA 102:18700–18705CrossRefPubMedGoogle Scholar
  155. Zhang SO, Trimble R, Guo F, Mak HY (2010) Lipid droplets as ubiquitous fat storage organelles in C. elegans. BMC Cell Biol 11:96CrossRefPubMedPubMedCentralGoogle Scholar
  156. Zhang J, Tripathi DN, Jing J, Alexander A, Kim J, Powell RT, Dere R, Tait-Mulder J, Lee JH, Paull TT, Pandita RK, Charaka VK, Pandita TK, Kastan MB, Walker CL (2015) ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol 17:1259–1269CrossRefPubMedPubMedCentralGoogle Scholar
  157. Zhang Y, Yan T, Sun D, Xie C, Zheng Y, Zhang L, Yagai T, Krausz KW, Bisson WH, Yang X, Gonzalez FJ (2018) Structure-activity relationships of the main bioactive constituents of euodia rutaecarpa on aryl hydrocarbon receptor activation and associated bile acid homeostasis. Drug Metabol Dispos 46:1030–1040CrossRefGoogle Scholar
  158. Zhao Y, Calon F, Julien C, Winkler JW, Petasis NA, Lukiw WJ, Bazan NG (2011) Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARgamma-mediated mechanisms in Alzheimer’s disease models. PLoS ONE 6:e15816CrossRefPubMedPubMedCentralGoogle Scholar
  159. Zhou P, Chen Z, Zhao N, Liu D, Guo ZY, Tan L, Hu J, Wang Q, Wang JZ, Zhu LQ (2011) Acetyl-L-carnitine attenuates homocysteine-induced Alzheimer-like histopathological and behavioral abnormalities. Rejuvenation Res 14:669–679CrossRefPubMedGoogle Scholar
  160. Zhu L, Zhong M, Elder GA, Sano M, Holtzman DM, Gandy S, Cardozo C, Haroutunian V, Robakis NK, Cai D (2015) Phospholipid dysregulation contributes to ApoE4-associated cognitive deficits in Alzheimer’s disease pathogenesis. Proc Natl Acad Sci USA 112:11965–11970CrossRefPubMedGoogle Scholar
  161. Zoeller RA, Lake AC, Nagan N, Gaposchkin DP, Legner MA, Lieberthal W (1999) Plasmalogens as endogenous antioxidants: somatic cell mutants reveal the importance of the vinyl ether. Biochem J 338:769–776CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2019

Authors and Affiliations

  1. 1.School of Life SciencesKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations