Advertisement

In vivo imaging for neurovascular disease research

  • Jin-Hui Yoon
  • Yong JeongEmail author
Review

Abstract

Connections between various cell types in the brain enable cognitive function. The neurovascular unit is a structure composed of different cell types that regulate neurovascular coupling, blood–brain barrier permeability, and other interactions with peripheral systems. The relationship among the components of the neurovascular unit is complex and difficult to study without the use of in vivo neurovascular disease imaging. In this review, we introduce principles and examples of various in vivo optical imaging techniques including laser Doppler flowmetry, laser speckle contrast imaging, intrinsic optical signal imaging, optical coherence tomography, and two-photon microscopy. Furthermore, we introduce recent advances of in vivo imaging and future directions for promoting neurovascular disease research.

Keywords

In vivo imaging Neurovascular unit Neurodegenerative disease Dementia 

Notes

Acknowledgements

A special thanks to Ms. Heeyon Jeong who helped us to increase the quality of Fig. 1 and supplementary Fig. 1. This research was supported by the Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2016M3C7A1913844).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12272_2019_1128_MOESM1_ESM.docx (234 kb)
Supplementary material 1 (DOCX 234 kb)

References

  1. Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonniere L, Bernard M, van Horssen J, de Vries HE, Charron F, Prat A (2011) The Hedgehog pathway promotes blood–brain barrier integrity and CNS immune quiescence. Science 334:1727–1731CrossRefPubMedGoogle Scholar
  2. Andermann ML, Gilfoy NB, Goldey GJ, Sachdev RN, Wolfel M, McCormick DA, Reid RC, Levene MJ (2013) Chronic cellular imaging of entire cortical columns in awake mice using microprisms. Neuron 80:900–913CrossRefPubMedGoogle Scholar
  3. Andreone BJ, Lacoste B, Gu C (2015) Neuronal and vascular interactions. Annu Rev Neurosci 38:25–46CrossRefPubMedPubMedCentralGoogle Scholar
  4. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood–brain barrier. Nature 468:557–561CrossRefPubMedGoogle Scholar
  5. Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215CrossRefPubMedGoogle Scholar
  6. Ayata C, Dunn AK, Gursoy OY, Huang Z, Boas DA, Moskowitz MA (2004) Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex. J Cereb Blood Flow Metab 24:744–755CrossRefPubMedGoogle Scholar
  7. Badhwar A, Lerch JP, Hamel E, Sled JG (2013) Impaired structural correlates of memory in Alzheimer’s disease mice. Neuroimage Clin 3:290–300CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bakker EN, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AW, Weller RO, Carare RO (2016) Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol 36:181–194CrossRefPubMedPubMedCentralGoogle Scholar
  9. Barretto RP, Ko TH, Jung JC, Wang TJ, Capps G, Waters AC, Ziv Y, Attardo A, Recht L, Schnitzer MJ (2011) Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nat Med 17:223–228CrossRefPubMedPubMedCentralGoogle Scholar
  10. Basak K, Manjunatha M, Dutta PK (2012) Review of laser speckle-based analysis in medical imaging. Med Biol Eng Comput 50:547–558CrossRefPubMedGoogle Scholar
  11. Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118:103–113CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, Gu C (2014) Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature 509:507–511CrossRefPubMedPubMedCentralGoogle Scholar
  13. Boas DA, Dunn AK (2010) Laser speckle contrast imaging in biomedical optics. J Biomed Opt 15:011109CrossRefPubMedPubMedCentralGoogle Scholar
  14. Booth MJ (2007) Adaptive optics in microscopy. Philos Trans A Math Phys Eng Sci 365:2829–2843CrossRefPubMedGoogle Scholar
  15. Brown R, Benveniste H, Black SE, Charpak S, Dichgans M, Joutel A, Nedergaard M, Smith KJ, Zlokovic BV, Wardlaw JM (2018) Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovasc Res 114:1462CrossRefPubMedGoogle Scholar
  16. Cai C, Fordsmann JC, Jensen SH, Gesslein B, Lonstrup M, Hald BO, Zambach SA, Brodin B, Lauritzen MJ (2018) Stimulation-induced increases in cerebral blood flow and local capillary vasoconstriction depend on conducted vascular responses. Proc Natl Acad Sci USA 115:E5796–E5804CrossRefPubMedGoogle Scholar
  17. Carrano A, Hoozemans JJ, van der Vies SM, Rozemuller AJ, van Horssen J, de Vries HE (2011) Amyloid Beta induces oxidative stress-mediated blood–brain barrier changes in capillary amyloid angiopathy. Antioxid Redox Signal 15:1167–1178CrossRefPubMedGoogle Scholar
  18. Chaigneau E, Oheim M, Audinat E, Charpak S (2003) Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc Natl Acad Sci USA 100:13081–13086CrossRefPubMedGoogle Scholar
  19. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cheng H, Luo Q, Zeng S, Chen S, Cen J, Gong H (2003) Modified laser speckle imaging method with improved spatial resolution. J Biomed Opt 8:559–564CrossRefPubMedGoogle Scholar
  21. Cui M, Zhou Y, Wei B, Zhu XH, Zhu W, Sanders MA, Ugurbil K, Chen W (2017) A proof-of-concept study for developing integrated two-photon microscopic and magnetic resonance imaging modality at ultrahigh field of 164 tesla. Sci Rep 7:2733CrossRefPubMedPubMedCentralGoogle Scholar
  22. Damisah EC, Hill RA, Tong L, Murray KN, Grutzendler J (2017) A fluoro-Nissl dye identifies pericytes as distinct vascular mural cells during in vivo brain imaging. Nat Neurosci 20:1023–1032CrossRefPubMedPubMedCentralGoogle Scholar
  23. de Carlo TE, Romano A, Waheed NK, Duker JS (2015) A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous 1:5CrossRefPubMedPubMedCentralGoogle Scholar
  24. Deng F, Ding C, Martin JC, Scarborough NM, Song Z, Eakins GS, Simpson GJ (2018) Video-rate hyperspectral two-photon fluorescence microscopy for in vivo imaging. SPIE BiOS 10505:9Google Scholar
  25. Devor A, Hillman EM, Tian P, Waeber C, Teng IC, Ruvinskaya L, Shalinsky MH, Zhu H, Haslinger RH, Narayanan SN, Ulbert I, Dunn AK, Lo EH, Rosen BR, Dale AM, Kleinfeld D, Boas DA (2008) Stimulus-induced changes in blood flow and 2-deoxyglucose uptake dissociate in ipsilateral somatosensory cortex. J Neurosci 28:14347–14357CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ding S (2013) In vivo astrocytic Ca(2+) signaling in health and brain disorders. Future Neurol 8:529–554CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dirnagl U, Kaplan B, Jacewicz M, Pulsinelli W (1989) Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model. J Cereb Blood Flow Metab 9:589–596CrossRefPubMedGoogle Scholar
  28. Dorand RD, Barkauskas DS, Evans TA, Petrosiute A, Huang AY (2014) Comparison of intravital thinned skull and cranial window approaches to study CNS immunobiology in the mouse cortex. Intravital 3:e29728CrossRefPubMedPubMedCentralGoogle Scholar
  29. Draijer M, Hondebrink E, van Leeuwen T, Steenbergen W (2009) Review of laser speckle contrast techniques for visualizing tissue perfusion. Lasers Med Sci 24:639–651CrossRefPubMedGoogle Scholar
  30. Drew PJ, Blinder P, Cauwenberghs G, Shih AY, Kleinfeld D (2010) Rapid determination of particle velocity from space-time images using the Radon transform. J Comput Neurosci 29:5–11CrossRefPubMedGoogle Scholar
  31. Dunn AK, Devor A, Bolay H, Andermann ML, Moskowitz MA, Dale AM, Boas DA (2003) Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation. Opt Lett 28:28–30CrossRefPubMedGoogle Scholar
  32. Erdener SE, Tang J, Sajjadi A, Kilic K, Kura S, Schaffer CB, Boas DA (2017) Spatio-temporal dynamics of cerebral capillary segments with stalling red blood cells. J Cereb Blood Flow Metab.  https://doi.org/10.1177/0271678X17743877 CrossRefPubMedGoogle Scholar
  33. Essex TJ, Byrne PO (1991) A laser Doppler scanner for imaging blood flow in skin. J Biomed Eng 13:189–194CrossRefPubMedGoogle Scholar
  34. Freygang WH Jr, Sokoloff L (1958) Quantitative measurement of regional circulation in the central nervous system by the use of radioactive inert gas. Adv Biol Med Phys 6:263–279CrossRefPubMedGoogle Scholar
  35. Goldey GJ, Roumis DK, Glickfeld LL, Kerlin AM, Reid RC, Bonin V, Schafer DP, Andermann ML (2014) Removable cranial windows for long-term imaging in awake mice. Nat Protoc 9:2515–2538CrossRefPubMedPubMedCentralGoogle Scholar
  36. Grinvald A, Frostig RD, Siegel RM, Bartfeld E (1991) High-resolution optical imaging of functional brain architecture in the awake monkey. Proc Natl Acad Sci USA 88:11559–11563CrossRefPubMedGoogle Scholar
  37. Hagag AM, Gao SS, Jia Y, Huang D (2017) Optical coherence tomography angiography: technical principles and clinical applications in ophthalmology. Taiwan J Ophthalmol 7:115–129CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hillman EM (2014) Coupling mechanism and significance of the BOLD signal: a status report. Annu Rev Neurosci 37:161–181CrossRefPubMedPubMedCentralGoogle Scholar
  39. Holtmaat A, Bonhoeffer T, Chow DK, Chuckowree J, De Paola V, Hofer SB, Hubener M, Keck T, Knott G, Lee WC, Mostany R, Mrsic-Flogel TD, Nedivi E, Portera-Cailliau C, Svoboda K, Trachtenberg JT, Wilbrecht L (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4:1128–1144CrossRefPubMedPubMedCentralGoogle Scholar
  40. Iadecola C (2017) The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96:17–42CrossRefPubMedPubMedCentralGoogle Scholar
  41. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4:147ra111CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jacob AD, Ramsaran AI, Mocle AJ, Tran LM, Yan C, Frankland PW, Josselyn SA (2018) A compact head-mounted endoscope for in vivo calcium imaging in freely behaving mice. Curr Protoc Neurosci 84:e51CrossRefPubMedGoogle Scholar
  43. Ji N (2017) Adaptive optical fluorescence microscopy. Nat Methods 14:374–380CrossRefPubMedGoogle Scholar
  44. Ji N, Freeman J, Smith SL (2016) Technologies for imaging neural activity in large volumes. Nat Neurosci 19:1154–1164CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jia Y, Bailey ST, Hwang TS, McClintic SM, Gao SS, Pennesi ME, Flaxel CJ, Lauer AK, Wilson DJ, Hornegger J, Fujimoto JG, Huang D (2015) Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci USA 112:E2395–2402CrossRefPubMedGoogle Scholar
  46. Kazmi SM, Richards LM, Schrandt CJ, Davis MA, Dunn AK (2015) Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow. J Cereb Blood Flow Metab 35:1076–1084CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kelly P, Hudry E, Hou SS, Bacskai BJ (2018) In vivo two photon imaging of astrocytic structure and function in Alzheimer’s disease. Front Aging Neurosci 10:219CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kety SS (1950) Circulation and metabolism of the human brain in health and disease. Am J Med 8:205–217CrossRefPubMedGoogle Scholar
  49. Kherlopian AR, Song T, Duan Q, Neimark MA, Po MJ, Gohagan JK, Laine AF (2008) A review of imaging techniques for systems biology. BMC Syst Biol 2:74CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kim J, Jeong Y (2013) Augmentation of sensory-evoked hemodynamic response in an early Alzheimer’s disease mouse model. J Alzheimers Dis 37:857–868CrossRefPubMedGoogle Scholar
  51. Kim TH, Zhang Y, Lecoq J, Jung JC, Li J, Zeng H, Niell CM, Schnitzer MJ (2016) Long-term optical access to an estimated one million neurons in the live mouse cortex. Cell Rep 17:3385–3394CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kisler K, Nelson AR, Rege SV, Ramanathan A, Wang Y, Ahuja A, Lazic D, Tsai PS, Zhao Z, Zhou Y, Boas DA, Sakadzic S, Zlokovic BV (2017) Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci 20:406–416CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kisler K, Lazic D, Sweeney MD, Plunkett S, El Khatib M, Vinogradov SA, Boas DA, Sakadzi S, Zlokovic BV (2018) In vivo imaging and analysis of cerebrovascular hemodynamic responses and tissue oxygenation in the mouse brain. Nat Protoc 13:1377–1402CrossRefPubMedGoogle Scholar
  54. Kovacs R, Heinemann U, Steinhauser C (2012) Mechanisms underlying blood–brain barrier dysfunction in brain pathology and epileptogenesis: role of astroglia. Epilepsia 53(Suppl 6):53–59CrossRefPubMedGoogle Scholar
  55. Lassen NA, Ingvar DH, Skinhoj E (1978) Brain function and blood flow. Sci Am 239:62–71CrossRefPubMedGoogle Scholar
  56. Le Thinh M, Paul JS, Al-Nashash H, Tan A, Luft AR, Sheu FS, Ong SH (2007) New insights into image processing of cortical blood flow monitors using laser speckle imaging. IEEE Trans Med Imaging 26:833–842CrossRefPubMedGoogle Scholar
  57. Lecrux C, Hamel E (2016) Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states. Philos Trans R Soc Lond B.  https://doi.org/10.1098/rstb.2015.0350 CrossRefGoogle Scholar
  58. Lecrux C, Toussay X, Kocharyan A, Fernandes P, Neupane S, Levesque M, Plaisier F, Shmuel A, Cauli B, Hamel E (2011) Pyramidal neurons are “neurogenic hubs” in the neurovascular coupling response to whisker stimulation. J Neurosci 31:9836–9847CrossRefPubMedGoogle Scholar
  59. Lecrux C, Sandoe CH, Neupane S, Kropf P, Toussay X, Tong XK, Lacalle-Aurioles M, Shmuel A, Hamel E (2017) Impact of altered cholinergic tones on the neurovascular coupling response to whisker stimulation. J Neurosci 37:1518–1531CrossRefPubMedGoogle Scholar
  60. Lee ES, Yoon JH, Choi J, Andika FR, Lee T, Jeong Y (2017a) A mouse model of subcortical vascular dementia reflecting degeneration of cerebral white matter and microcirculation. J Cereb Blood Flow Metab.  https://doi.org/10.1177/0271678X17736963 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lee H, Jung S, Lee P, Jeong Y (2017b) Altered intrinsic functional connectivity in the latent period of epileptogenesis in a temporal lobe epilepsy model. Exp Neurol 296:89–98CrossRefPubMedGoogle Scholar
  62. Leitgeb RA, Werkmeister RM, Blatter C, Schmetterer L (2014) Doppler optical coherence tomography. Prog Retin Eye Res 41:26–43CrossRefPubMedPubMedCentralGoogle Scholar
  63. Liberti WA, Perkins LN, Leman DP, Gardner TJ (2017) An open source, wireless capable miniature microscope system. J Neural Eng 14:045001CrossRefPubMedPubMedCentralGoogle Scholar
  64. Liu X, Li C, Falck JR, Roman RJ, Harder DR, Koehler RC (2008) Interaction of nitric oxide, 20-HETE, and EETs during functional hyperemia in whisker barrel cortex. Am J Physiol Heart Circ Physiol 295:H619–631CrossRefPubMedPubMedCentralGoogle Scholar
  65. Liwnicz BH, Leach JL, Yeh HS, Privitera M (1990) Pericyte degeneration and thickening of basement membranes of cerebral microvessels in complex partial seizures: electron microscopic study of surgically removed tissue. Neurosurgery 26:409–420CrossRefPubMedGoogle Scholar
  66. Longden TA, Dabertrand F, Koide M, Gonzales AL, Tykocki NR, Brayden JE, Hill-Eubanks D, Nelson MT (2017) Capillary K(+)-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat Neurosci 20:717–726CrossRefPubMedPubMedCentralGoogle Scholar
  67. Lu HD, Chen G, Cai J, Roe AW (2017) Intrinsic signal optical imaging of visual brain activity: tracking of fast cortical dynamics. Neuroimage 148:160–168CrossRefPubMedPubMedCentralGoogle Scholar
  68. Luan L, Sullender CT, Li X, Zhao Z, Zhu H, Wei X, Xie C, Dunn AK (2018) Nanoelectronics enabled chronic multimodal neural platform in a mouse ischemic model. J Neurosci Methods 295:68–76CrossRefPubMedGoogle Scholar
  69. Lukasz A, Hillgruber C, Oberleithner H, Kusche-Vihrog K, Pavenstadt H, Rovas A, Hesse B, Goerge T, Kumpers P (2017) Endothelial glycocalyx breakdown is mediated by angiopoietin-2. Cardiovasc Res 113:671–680CrossRefPubMedGoogle Scholar
  70. Ma Y, Shaik MA, Kim SH, Kozberg MG, Thibodeaux DN, Zhao HT, Yu H, Hillman EM (2016) Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches. Philos Trans R Soc Lond B 371:1705CrossRefGoogle Scholar
  71. Martin C (2014) Contributions and complexities from the use of in vivo animal models to improve understanding of human neuroimaging signals. Front Neurosci 8:211CrossRefPubMedPubMedCentralGoogle Scholar
  72. Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, Gordus A, Renninger SL, Chen TW, Bargmann CI, Orger MB, Schreiter ER, Demb JB, Gan WB, Hires SA, Looger LL (2013) An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods 10:162–170CrossRefPubMedPubMedCentralGoogle Scholar
  73. Masamoto K, Unekawa M, Watanabe T, Toriumi H, Takuwa H, Kawaguchi H, Kanno I, Matsui K, Tanaka KF, Tomita Y, Suzuki N (2015) Unveiling astrocytic control of cerebral blood flow with optogenetics. Sci Rep 5:11455CrossRefPubMedPubMedCentralGoogle Scholar
  74. Mokbul MI (2017) Optical coherence tomography: basic concepts and applications in neuroscience research. J Med Eng 2017:3409327Google Scholar
  75. Packer AM, Russell LE, Dalgleish HW, Hausser M (2015) Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat Methods 12:140–146CrossRefPubMedGoogle Scholar
  76. Park JH, Sun W, Cui M (2015) High-resolution in vivo imaging of mouse brain through the intact skull. Proc Natl Acad Sci USA 112:9236–9241CrossRefPubMedGoogle Scholar
  77. Park JH, Kong L, Zhou Y, Cui M (2017) Large-field-of-view imaging by multi-pupil adaptive optics. Nat Methods 14:581–583CrossRefPubMedPubMedCentralGoogle Scholar
  78. Ponticorvo A, Dunn AK (2010) How to build a laser speckle contrast imaging (LSCI) system to monitor blood flow. J Vis Exp 45:2004Google Scholar
  79. Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476CrossRefPubMedGoogle Scholar
  80. Ramirez J, Berezuk C, McNeely AA, Gao F, McLaurin J, Black SE (2016) Imaging the perivascular space as a potential biomarker of neurovascular and neurodegenerative diseases. Cell Mol Neurobiol 36:289–299CrossRefPubMedGoogle Scholar
  81. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454:345–359CrossRefPubMedPubMedCentralGoogle Scholar
  82. Richards LM, Kazmi SM, Davis JL, Olin KE, Dunn AK (2013) Low-cost laser speckle contrast imaging of blood flow using a webcam. Biomed Opt Express 4:2269–2283CrossRefPubMedPubMedCentralGoogle Scholar
  83. Richner TJ, Baumgartner R, Brodnick SK, Azimipour M, Krugner-Higby LA, Eliceiri KW, Williams JC, Pashaie R (2015) Patterned optogenetic modulation of neurovascular and metabolic signals. J Cereb Blood Flow Metab 35:140–147CrossRefPubMedGoogle Scholar
  84. Roy CS, Sherrington CS (1890) On the regulation of the blood-supply of the brain. J Physiol 11(85–158):117Google Scholar
  85. Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA, Ramanathan A, Zlokovic BV (2013) Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun 4:2932CrossRefPubMedPubMedCentralGoogle Scholar
  86. Sakadzic S, Roussakis E, Yaseen MA, Mandeville ET, Srinivasan VJ, Arai K, Ruvinskaya S, Devor A, Lo EH, Vinogradov SA, Boas DA (2010) Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue. Nat Methods 7:755–759CrossRefPubMedPubMedCentralGoogle Scholar
  87. Senarathna J, Rege A, Li N, Thakor NV (2013) Laser speckle contrast imaging: theory, instrumentation and applications. IEEE Rev Biomed Eng 6:99–110CrossRefPubMedGoogle Scholar
  88. Serov A, Lasser T (2005) High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor. Opt Express 13:6416–6428CrossRefPubMedGoogle Scholar
  89. Shih AY, Driscoll JD, Drew PJ, Nishimura N, Schaffer CB, Kleinfeld D (2012) Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab 32:1277–1309CrossRefPubMedPubMedCentralGoogle Scholar
  90. Shin P, Choi W, Joo J, Oh WY (2018) Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography. J Cereb Blood Flow Metab.  https://doi.org/10.1177/0271678X18773432 CrossRefPubMedGoogle Scholar
  91. Silasi G, Xiao D, Vanni MP, Chen AC, Murphy TH (2016) Intact skull chronic windows for mesoscopic wide-field imaging in awake mice. J Neurosci Methods 267:141–149CrossRefPubMedPubMedCentralGoogle Scholar
  92. Sofroniew NJ, Flickinger D, King J, Svoboda K (2016) A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. Elife 5:e14472CrossRefPubMedPubMedCentralGoogle Scholar
  93. Srinivasan VJ, Atochin DN, Radhakrishnan H, Jiang JY, Ruvinskaya S, Wu W, Barry S, Cable AE, Ayata C, Huang PL, Boas DA (2011) Optical coherence tomography for the quantitative study of cerebrovascular physiology. J Cereb Blood Flow Metab 31:1339–1345CrossRefPubMedPubMedCentralGoogle Scholar
  94. Stanimirovic DB, Friedman A (2012) Pathophysiology of the neurovascular unit: disease cause or consequence? J Cereb Blood Flow Metab 32:1207–1221CrossRefPubMedPubMedCentralGoogle Scholar
  95. Suh M, Shariff S, Bahar S, Mehta AD, Schwartz TH (2005) Intrinsic optical signal imaging of normal and abnormal physiology in animals and humans—seeing the invisible. Clin Neurosurg 52:135–149PubMedGoogle Scholar
  96. Sulis Sato S, Artoni P, Landi S, Cozzolino O, Parra R, Pracucci E, Trovato F, Szczurkowska J, Luin S, Arosio D, Beltram F, Cancedda L, Kaila K, Ratto GM (2017) Simultaneous two-photon imaging of intracellular chloride concentration and pH in mouse pyramidal neurons in vivo. Proc Natl Acad Sci USA 114:E8770–E8779CrossRefPubMedGoogle Scholar
  97. Sutherland BA, Rabie T, Buchan AM (2014) Laser Doppler flowmetry to measure changes in cerebral blood flow. Methods Mol Biol 1135:237–248CrossRefPubMedGoogle Scholar
  98. Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV (2018) The role of brain vasculature in neurodegenerative disorders. Nat Neurosci 21:1318–1331CrossRefPubMedGoogle Scholar
  99. Szalay G, Judak L, Katona G, Ocsai K, Juhasz G, Veress M, Szadai Z, Feher A, Tompa T, Chiovini B, Maak P, Rozsa B (2016) Fast 3D imaging of spine, dendritic, and neuronal assemblies in behaving animals. Neuron 92:723–738CrossRefPubMedPubMedCentralGoogle Scholar
  100. Tarantini S, Fulop GA, Kiss T, Farkas E, Zolei-Szenasi D, Galvan V, Toth P, Csiszar A, Ungvari Z, Yabluchanskiy A (2017) Demonstration of impaired neurovascular coupling responses in TG2576 mouse model of Alzheimer’s disease using functional laser speckle contrast imaging. Geroscience 39:465–473CrossRefPubMedPubMedCentralGoogle Scholar
  101. Tarbell JM, Cancel LM (2016) The glycocalyx and its significance in human medicine. J Intern Med 280:97–113CrossRefPubMedGoogle Scholar
  102. Terasaki Y, Liu Y, Hayakawa K, Pham LD, Lo EH, Ji X, Arai K (2014) Mechanisms of neurovascular dysfunction in acute ischemic brain. Curr Med Chem 21:2035–2042CrossRefPubMedPubMedCentralGoogle Scholar
  103. Thurley K, Ayaz A (2017) Virtual reality systems for rodents. Curr Zool 63:109–119CrossRefPubMedGoogle Scholar
  104. Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, Kaser-Eichberger A, Strohmaier C, Runge C, Aigner L, Rivera FJ, Reitsamer HA (2016) Brain and retinal pericytes: origin. Function and Role. Front Cell Neurosci 10:20CrossRefPubMedPubMedCentralGoogle Scholar
  105. Uhlirova H, Kilic K, Tian P, Thunemann M, Desjardins M, Saisan PA, Sakadzic S, Ness TV, Mateo C, Cheng Q, Weldy KL, Razoux F, Vandenberghe M, Cremonesi JA, Ferri CG, Nizar K, Sridhar VB, Steed TC, Abashin M, Fainman Y, Masliah E, Djurovic S, Andreassen OA, Silva GA, Boas DA, Kleinfeld D, Buxton RB, Einevoll GT, Dale AM, Devor A (2016) Cell type specificity of neurovascular coupling in cerebral cortex. Elife.  https://doi.org/10.7554/eLife.14315 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Underly RG, Levy M, Hartmann DA, Grant RI, Watson AN, Shih AY (2017) Pericytes as inducers of rapid, matrix metalloproteinase-9-dependent capillary damage during ischemia. J Neurosci 37:129–140CrossRefPubMedPubMedCentralGoogle Scholar
  107. Ustione A, Piston DW (2011) A simple introduction to multiphoton microscopy. J Microsc 243:221–226CrossRefPubMedGoogle Scholar
  108. Vanlandewijck M, He L, Mae MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Lavina B, Gouveia L, Sun Y, Raschperger E, Rasanen M, Zarb Y, Mochizuki N, Keller A, Lendahl U, Betsholtz C (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554:475–480CrossRefPubMedGoogle Scholar
  109. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980CrossRefPubMedGoogle Scholar
  110. Wang K, Milkie DE, Saxena A, Engerer P, Misgeld T, Bronner ME, Mumm J, Betzig E (2014) Rapid adaptive optical recovery of optimal resolution over large volumes. Nat Methods 11:625–628CrossRefPubMedPubMedCentralGoogle Scholar
  111. Winship IR (2014) Laser speckle contrast imaging to measure changes in cerebral blood flow. Methods Mol Biol 1135:223–235CrossRefPubMedGoogle Scholar
  112. Wright PW, Brier LM, Bauer AQ, Baxter GA, Kraft AW, Reisman MD, Bice AR, Snyder AZ, Lee JM, Culver JP (2017) Functional connectivity structure of cortical calcium dynamics in anesthetized and awake mice. PLoS ONE 12:e0185759CrossRefPubMedPubMedCentralGoogle Scholar
  113. Xu HT, Pan F, Yang G, Gan WB (2007) Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10:549–551CrossRefPubMedGoogle Scholar
  114. Yamazaki Y, Kanekiyo T (2017) Blood–brain barrier dysfunction and the pathogenesis of Alzheimer’s disease. Int J Mol Sci 18:1965CrossRefPubMedCentralGoogle Scholar
  115. Yoon HJ, Lee ES, Kang M, Jeong Y, Park JH (2015) In vivo multi-photon luminescence imaging of cerebral vasculature and blood–brain barrier integrity using gold nanoparticles. J Mater Chem B 3:2935–2938CrossRefGoogle Scholar
  116. Yoon JH, Lee ES, Jeong Y (2017) In vivo imaging of the cerebral endothelial glycocalyx in mice. J Vasc Res 54:59–67CrossRefPubMedGoogle Scholar
  117. Zakharov P, Volker AC, Wyss MT, Haiss F, Calcinaghi N, Zunzunegui C, Buck A, Scheffold F, Weber B (2009) Dynamic laser speckle imaging of cerebral blood flow. Opt Express 17:13904–13917CrossRefPubMedGoogle Scholar
  118. Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, Marques S, Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142CrossRefPubMedGoogle Scholar
  119. Zeppenfeld DM, Simon M, Haswell JD, D’Abreo D, Murchison C, Quinn JF, Grafe MR, Woltjer RL, Kaye J, Iliff JJ (2017) Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol 74:91–99CrossRefPubMedGoogle Scholar
  120. Zhu D, Wang Y, Singh I, Bell RD, Deane R, Zhong Z, Sagare A, Winkler EA, Zlokovic BV (2010) Protein S controls hypoxic/ischemic blood-brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor. Blood 115:4963–4972CrossRefPubMedPubMedCentralGoogle Scholar
  121. Zhu J, Li X, Yin J, Hu Y, Gu Y, Pan S (2017) Glycocalyx degradation leads to blood–brain barrier dysfunction and brain edema after asphyxia cardiac arrest in rats. J Cereb Blood Flow Metab 38:1979–1992CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2019

Authors and Affiliations

  1. 1.Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  2. 2.KI for Health Science and TechnologyKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea

Personalised recommendations