Advertisement

Role of stem cell mobilization in the treatment of ischemic diseases

  • Seong Gyu Kwon
  • Insoo Park
  • Yang Woo Kwon
  • Tae Wook Lee
  • Gyu Tae Park
  • Jae Ho KimEmail author
Review
  • 87 Downloads

Abstract

Stem cell mobilization plays important roles in the treatment of severe ischemic diseases, including myocardial infarction, limb ischemia, ischemic stroke, and acute kidney injury. Stem cell mobilization refers to the egress of heterogeneous stem cells residing in the bone marrow into the peripheral blood. In the clinic, granulocyte colony-stimulating factor (G-CSF) is the drug most commonly used to induce stem cell mobilization. Plerixafor, a direct antagonist of CXCR4, is also frequently used alone or in combination with G-CSF to mobilize stem cells. The molecular mechanisms by which G-CSF induces stem cell mobilization are well characterized. Briefly, G-CSF activates neutrophils in the bone marrow, which then release proteolytic enzymes, such as neutrophil elastase, cathepsin G, and matrix metalloproteinase 9, which cleave a variety of molecules responsible for stem cell retention in the bone marrow, including CXCL12, VCAM-1, and SCF. Subsequently, stem cells are released from the bone marrow into the peripheral blood. The released stem cells can be collected and used in autologous or allogeneic transplantation. To identify better conditions for stem cell mobilization in the treatment of acute and chronic ischemic diseases, several preclinical and clinical studies have been conducted over the past decade on various mobilizing agents. In this paper, we are going to review methods that induce mobilization of stem cells from the bone marrow and introduce the application of stem cell mobilization to therapy of ischemic diseases.

Keywords

Stem cell mobilization G-CSF Ischemic disease CXCR4 antagonist 

Notes

Acknowledgements

This research was supported by the MRC program (NRF-2015R1A5A2009656) and the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2015M3A9C6030280; NRF-2017M3A9B4051542).

Compliance with ethical standards

Conflict of interest

All contributing authors declare no conflicts of interest.

References

  1. Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H, Inra CN, Jaiyeola C, Zhao Z, Luby-Phelps K, Morrison SJ (2015) Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526:126–130CrossRefGoogle Scholar
  2. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC (1997) The chemokine SDF-1 is a chemoattractant for human CD34 + hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34 + progenitors to peripheral blood. J Exp Med 185:111–120CrossRefGoogle Scholar
  3. Anderlini P, Champlin RE (2008) Biologic and molecular effects of granulocyte colony-stimulating factor in healthy individuals: recent findings and current challenges. Blood 111:1767–1772CrossRefGoogle Scholar
  4. Anderlini P, Przepiorka D, Champlin R, Korbling M (1996) Biologic and clinical effects of granulocyte colony-stimulating factor in normal individuals. Blood 88:2819–2825Google Scholar
  5. Anderson JL, Morrow DA (2017) Acute myocardial infarction. N Engl J Med 376:2053–2064CrossRefGoogle Scholar
  6. Borlongan CV (2011) Bone marrow stem cell mobilization in stroke: a ‘bonehead’ may be good after all! Leukemia 25:1674–1686CrossRefGoogle Scholar
  7. Borlongan CV, Hess DC (2006) Granulocyte colony-stimulating factor. CMAJ 175:1096CrossRefGoogle Scholar
  8. Brannan CI, Lyman SD, Williams DE, Eisenman J, Anderson DM, Cosman D, Bedell MA, Jenkins NA, Copeland NG (1991) Steel-Dickie mutation encodes a c-kit ligand lacking transmembrane and cytoplasmic domains. Proc Natl Acad Sci USA 88:4671–4674CrossRefGoogle Scholar
  9. Bregni M, Siena S, Di Nicola M, Dodero A, Peccatori F, Ravagnani F, Danesini G, Laffranchi A, Bonadonna G, Gianni AM (1996) Comparative effects of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor after high-dose cyclophosphamide cancer therapy. J Clin Oncol 14:628–635CrossRefGoogle Scholar
  10. Compagna R, Amato B, Massa S, Amato M, Grande R, Butrico L, De Franciscis S, Serra R (2015) Cell therapy in patients with critical limb ischemia. Stem Cells Int 2015:931420CrossRefGoogle Scholar
  11. Crane GM, Jeffery E, Morrison SJ (2017) Adult haematopoietic stem cell niches. Nat Rev Immunol 17:573CrossRefGoogle Scholar
  12. Dailey T, Tajiri N, Kaneko Y, Borlongan CV (2013) Regeneration of neuronal cells following cerebral injury. Front Neurol Neurosci 32:54–61CrossRefGoogle Scholar
  13. Dale DC, Crawford J, Klippel Z, Reiner M, Osslund T, Fan E, Morrow PK, Allcott K, Lyman GHJSCIC (2018) A systematic literature review of the efficacy, effectiveness, and safety of filgrastim. Support Care Cancer 26:7–20CrossRefGoogle Scholar
  14. De Clercq E (2009) The AMD3100 story: the path to the discovery of a stem cell mobilizer (Mozobil). Biochem Pharmacol 77:1655–1664CrossRefGoogle Scholar
  15. Demetri GD, Griffin JD (1991) Granulocyte colony-stimulating factor and its receptor. Blood 78:2791–2808Google Scholar
  16. Deng Z, Yang C, Deng H, Yang A, Geng T, Chen X, Ma A, Liu Z (2006) Effects of GM-CSF on the stem cells mobilization and plasma C-reactive protein levels in patients with acute myocardial infarction. Int J Cardiol 113:92–96CrossRefGoogle Scholar
  17. Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462CrossRefGoogle Scholar
  18. Dipersio JF, Stadtmauer EA, Nademanee A, Micallef IN, Stiff PJ, Kaufman JL, Maziarz RT, Hosing C, Fruehauf S, Horwitz M, Cooper D, Bridger G, Calandra G, Investigators (2009) Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 113:5720–5726Google Scholar
  19. England TJ, Sprigg N, Alasheev AM, Belkin AA, Kumar A, Prasad K, Bath PM (2016) Granulocyte-colony stimulating factor (G-CSF) for stroke: an individual patient data meta-analysis. Sci Rep 6:36567CrossRefGoogle Scholar
  20. Fadini GP, Fiala M, Cappellari R, Danna M, Park S, Poncina N, Menegazzo L, Albiero M, Dipersio J, Stockerl-Goldstein K, Avogaro A (2015) Diabetes limits stem cell mobilization following G-CSF but not plerixafor. Diabetes 64:2969–2977CrossRefGoogle Scholar
  21. Fischmeister G, Kurz M, Haas OA, Micksche M, Buchinger P, Printz D, Ressmann G, Stroebel T, Peters C, Fritsch G, Gadner H (1999) G-CSF versus GM-CSF for stimulation of peripheral blood progenitor cells (PBPC) and leukocytes in healthy volunteers: comparison of efficacy and tolerability. Ann Hematol 78:117–123CrossRefGoogle Scholar
  22. Flanagan JG, Chan DC, Leder P (1991) Transmembrane form of the kit ligand growth factor is determined by alternative splicing and is missing in the Sld mutant. Cell 64:1025–1035CrossRefGoogle Scholar
  23. Gale RP, Vorobiov A (2013) First use of myeloid colony-stimulating factors in humans. Bone Marrow Transplant 48:1358CrossRefGoogle Scholar
  24. Ghobadi A, Rettig M, Cooper M, Holt M, Ritchey J, Eissenberg L, Dipersio JF (2014) Bortezomib is a rapid mobilizer of hematopoietic stem cells in mice via modulation of the VCAM-1/VLA-4 axis, place. Blood 124:2752CrossRefGoogle Scholar
  25. Gibson CL, Bath PM, Murphy SP (2005) G-CSF reduces infarct volume and improves functional outcome after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 25:431–439CrossRefGoogle Scholar
  26. Girbl T, Lunzer V, Greil R, Namberger K, Hartmann TN (2014) The CXCR4 and adhesion molecule expression of CD34 + hematopoietic cells mobilized by “on-demand” addition of plerixafor to granulocyte-colony-stimulating factor. Transfusion 54:2325–2335CrossRefGoogle Scholar
  27. Greenbaum AM, Link DC (2011) Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization. Leukemia 25:211–217CrossRefGoogle Scholar
  28. Heo SC, Kwon YW, Jang IH, Jeong GO, Yoon JW, Kim CD, Kwon SM, Bae YS, Kim JH (2014) WKYMVm-induced activation of formyl peptide receptor 2 stimulates ischemic neovasculogenesis by promoting homing of endothelial colony-forming cells. Stem Cells 32:779–790CrossRefGoogle Scholar
  29. Heo SC, Kwon YW, Jang IH, Jeong GO, Lee TW, Yoon JW, Shin HJ, Jeong HC, Ahn Y, Ko TH, Lee SC, Han J, Kim JH (2017) Formyl peptide receptor 2 Is involved in cardiac repair after myocardial infarction through mobilization of circulating angiogenic cells. Stem Cells 35:654–665CrossRefGoogle Scholar
  30. Hira VVV, Van Noorden CJF, Carraway HE, Maciejewski JP, Molenaar RJ (2017) Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches. Biochim et Biophys Acta (BBA)-Rev Cancer 1868:183–198CrossRefGoogle Scholar
  31. Hopman RK, Dipersio JF (2014) Advances in stem cell mobilization. Blood Rev 28:31–40CrossRefGoogle Scholar
  32. Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol 23:1185–1189CrossRefGoogle Scholar
  33. Huang J, Li Y, Tang Y, Tang G, Yang GY, Wang Y (2013) CXCR4 antagonist AMD3100 protects blood-brain barrier integrity and reduces inflammatory response after focal ischemia in mice. Stroke 44:190–197CrossRefGoogle Scholar
  34. Kiel MJ, Morrison SJ (2006) Maintaining hematopoietic stem cells in the vascular niche. Immunity 25:862–864CrossRefGoogle Scholar
  35. Kim BR, Jang IH, Shin SH, Kwon YW, Heo SC, Choi EJ, Lee JS, Kim JH (2014) Therapeutic angiogenesis in a murine model of limb ischemia by recombinant periostin and its fasciclin I domain. Biochim Biophys Acta 1842:1324–1332CrossRefGoogle Scholar
  36. Kucia M, Dawn B, Hunt G, Guo Y, Wysoczynski M, Majka M, Ratajczak J, Rezzoug F, Ildstad ST, Bolli R, Ratajczak MZ (2004) Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res 95:1191–1199CrossRefGoogle Scholar
  37. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, Ratajczak MZ (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4 + stem cells identified in adult bone marrow. Leukemia 20:857–869CrossRefGoogle Scholar
  38. Kwon YW, Lee SJ, Heo SC, Lee TW, Park GT, Yoon JW, Kim SC, Shin HJ, Lee SC, Kim JH (2018) Role of CXCR2 in the Ac-PGP-induced mobilization of circulating angiogenic cells and its therapeutic implications. Stem Cells Transl Med 4:5.  https://doi.org/10.1002/sctm.18-0035 Google Scholar
  39. Liles WC, Broxmeyer HE, Rodger E, Wood B, Hubel K, Cooper S, Hangoc G, Bridger GJ, Henson GW, Calandra G, Dale DC (2003) Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102:2728–2730CrossRefGoogle Scholar
  40. Mao L, Huang M, Chen SC, Li YN, Xia YP, He QW, Wang MD, Huang Y, Zheng L, Hu B (2014) Endogenous endothelial progenitor cells participate in neovascularization via CXCR4/SDF-1 axis and improve outcome after stroke. CNS Neurosci Ther 20:460–468CrossRefGoogle Scholar
  41. Mcgrath KE, Koniski AD, Maltby KM, Mcgann JK, Palis J (1999) Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 213:442–456CrossRefGoogle Scholar
  42. Miyazawa K, Williams DA, Gotoh A, Nishimaki J, Broxmeyer HE, Toyama K (1995) Membrane-bound Steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form. Blood 85:641–649Google Scholar
  43. Moazzami K, Roohi A, Moazzami B (2013) Granulocyte colony stimulating factor therapy for acute myocardial infarction. Cochrane Database Syst Rev 4:5.  https://doi.org/10.1002/14651858.CD00884 Google Scholar
  44. Mohammadzadeh L, Samedanifard SH, Keshavarzi A, Alimoghaddam K, Larijani B, Ghavamzadeh A, Ahmadi AS, Shojaeifard A, Ostadali MR, Sharifi AM, Amini MR, Mahmoudian A, Fakhraei H, Aalaa M, Mohajeri-Tehrani MR (2013) Therapeutic outcomes of transplanting autologous granulocyte colony-stimulating factor-mobilised peripheral mononuclear cells in diabetic patients with critical limb ischaemia. Exp Clin Endocrinol Diabetes 121:48–53CrossRefGoogle Scholar
  45. Nagasawa T (2014) CXC chemokine ligand 12 (CXCL12) and its receptor CXCR4. J Mol Med (Berl) 92:433–439CrossRefGoogle Scholar
  46. Nocka K, Buck J, Levi E, Besmer P (1990) Candidate ligand for the c-kit transmembrane kinase receptor: KL, a fibroblast derived growth factor stimulates mast cells and erythroid progenitors. EMBO J 9:3287–3294CrossRefGoogle Scholar
  47. Ramirez P, Rettig MP, Uy GL, Deych E, Holt MS, Ritchey JK, Dipersio JF (2009) BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood 114:1340–1343CrossRefGoogle Scholar
  48. Ratajczak MZ, Kim CH, Wojakowski W, Janowska-Wieczorek A, Kucia M, Ratajczak J (2010) Innate immunity as orchestrator of stem cell mobilization. Leukemia 24:1667–1675CrossRefGoogle Scholar
  49. Read MA, Neish AS, Luscinskas FW, Palombella VJ, Maniatis T, Collins T (1995) The proteasome pathway is required for cytokine-induced endothelial-leukocyte adhesion molecule expression. Immunity 2:493–506CrossRefGoogle Scholar
  50. Reinecke H, Unrath M, Freisinger E, Bunzemeier H, Meyborg M, Lüders F, Gebauer K, Roeder N, Berger K, Malyar NM (2015) Peripheral arterial disease and critical limb ischaemia: still poor outcomes and lack of guideline adherence. Eur Heart J 36:932–938CrossRefGoogle Scholar
  51. Ripa RS (2012) Granulocyte-colony stimulating factor therapy to induce neovascularization in ischemic heart disease. Dan Med J 59:B4411Google Scholar
  52. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2012) Executive summary: heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125:188–197CrossRefGoogle Scholar
  53. Ruscher K, Kuric E, Liu Y, Walter HL, Issazadeh-Navikas S, Englund E, Wieloch T (2013) Inhibition of CXCL12 signaling attenuates the postischemic immune response and improves functional recovery after stroke. J Cereb Blood Flow Metab 33:1225–1234CrossRefGoogle Scholar
  54. Schneider A, Kruger C, Steigleder T, Weber D, Pitzer C, Laage R, Aronowski J, Maurer MH, Gassler N, Mier W, Hasselblatt M, Kollmar R, Schwab S, Sommer C, Bach A, Kuhn HG, Schabitz WR (2005) The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115:2083–2098CrossRefGoogle Scholar
  55. Shpall EJ, Wheeler CA, Turner SA, Yanovich S, Brown RA, Pecora AL, Shea TC, Mangan KF, Williams SF, Lemaistre CF, Long GD, Jones R, Davis MW, Murphy-Filkins R, Parker WR, Glaspy JA (1999) A randomized phase 3 study of peripheral blood progenitor cell mobilization with stem cell factor and filgrastim in high-risk breast cancer patients. Blood 93:2491–2501Google Scholar
  56. Shyu W-C, Lin S-Z, Lee C-C, Liu DD, Li H (2006a) Granulocyte colony-stimulating factor for acute ischemic stroke: a randomized controlled trial. Can Med Assoc J 174:927–933CrossRefGoogle Scholar
  57. Shyu WC, Lin SZ, Lee CC, Liu DD, Li H (2006b) Granulocyte colony-stimulating factor for acute ischemic stroke: a randomized controlled trial. CMAJ 174:927–933CrossRefGoogle Scholar
  58. Spinetti G, Mangialardi G, Specchia C, Madeddu P (2015) Enhancing stem cell mobility: new hope for treatment of cardiovascular complications in patients with diabetes? Diabetes 64:2704–2707CrossRefGoogle Scholar
  59. Takano H, Ueda K, Hasegawa H, Komuro I (2007) G-CSF therapy for acute myocardial infarction. Trends Pharmacol Sci 28:512–517CrossRefGoogle Scholar
  60. Tay J, Levesque J-P, Winkler IGJIJOH (2017) Cellular players of hematopoietic stem cell mobilization in the bone marrow niche. Int J Hematol 105:129–140CrossRefGoogle Scholar
  61. Tsou LK, Huang YH, Song JS, Ke YY, Huang JK, Shia KS (2018) Harnessing CXCR4 antagonists in stem cell mobilization, HIV infection, ischemic diseases, and oncology. Med Res Rev 38:1188–1234CrossRefGoogle Scholar
  62. Wardlaw JM, Murray V, Berge E, Del Zoppo GJ (2014) Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev 4:CD000213Google Scholar
  63. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, Poulton IJ, Van Rooijen N, Alexander KA, Raggatt LJ, Levesque JP (2010) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116:4815–4828CrossRefGoogle Scholar
  64. Wojakowski W, Tendera M, Kucia M, Zuba-Surma E, Milewski K, Wallace-Bradley D, Kazmierski M, Buszman P, Hrycek E, Cybulski W, Kaluza G, Wieczorek P, Ratajczak J, Ratajczak MZ (2010) Cardiomyocyte differentiation of bone marrow-derived Oct-4 + CXCR4 + SSEA-1 + very small embryonic-like stem cells. Int J Oncol 37:237–247Google Scholar
  65. Wojakowski W, Landmesser U, Bachowski R, Jadczyk T, Tendera M (2012) Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia 26:23–33CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2019

Authors and Affiliations

  1. 1.Department of PhysiologyPusan National University School of MedicineYangsanRepublic of Korea
  2. 2.Research Institute of Convergence Biomedical Science and TechnologyPusan National University Yangsan HospitalYangsanRepublic of Korea

Personalised recommendations