Advertisement

Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 as a molecular target in breast cancer: a therapeutic perspective of gynecological cancer

  • Garam Kim
  • Poshan Yugal Bhattarai
  • Hong Seok ChoiEmail author
Review
  • 93 Downloads

Abstract

Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (PIN1) induces conformational and functional changes to numerous key signaling molecules following proline-directed phosphorylation and its deregulation contributes to disease, particularly cancer. PIN1 is overexpressed in breast cancer, promoting cell proliferation and transformation in collaboration with several oncogenic signaling pathways, and is correlated with a poor clinical outcome. PIN1 level is also increased in certain gynecological cancers such as cervical, ovarian, and endometrial cancers. Although women with breast cancer are at risk of developing a second primary gynecological malignancy, particularly of the endometrium and ovary, the common oncogenic signaling pathway mediated by PIN1 has not been noted to date. This review discusses the roles of PIN1 in breast tumorigenesis and gynecological cancer progression, as well as the clinical effect of targeting this enzyme in breast and gynecological cancers.

Keywords

Breast cancer Gynecological cancer Post-phosphorylation signaling PIN1 

Notes

Acknowledgments

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant Number: HI18C1083).

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.

References

  1. Aggarwal P (2014) Cervical cancer: can it be prevented? World J Clin Oncol 5:775–780CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bean LM, Sulzmaier FJ, Anderson KM, Tancioni I, Kolev V, Plaxe SC, Mchale MT, Schlaepfer DD, Pachter JA (2017) Focal adhesion kinase (FAK) inhibition overcomes cisplatin-resistance in epithelial ovarian cancer. Gynecol Oncol 145:97–98CrossRefGoogle Scholar
  3. Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M, Mandelblatt JS, Yakovlev AY, Habbema JD, Feuer EJ, Cancer I, Surveillance Modeling Network C (2005) Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med 353:1784–1792CrossRefPubMedGoogle Scholar
  4. Brinton LA, Westhoff CL, Scoccia B, Lamb EJ, Althuis MD, Mabie JE, Moghissi KS (2005) Causes of infertility as predictors of subsequent cancer risk. Epidemiology 16:500–507CrossRefPubMedGoogle Scholar
  5. Brown SB, Hankinson SE (2015) Endogenous estrogens and the risk of breast, endometrial, and ovarian cancers. Steroids 99:8–10CrossRefPubMedGoogle Scholar
  6. Burd EM (2003) Human papillomavirus and cervical cancer. Clin Microbiol Rev 16:1–17CrossRefPubMedPubMedCentralGoogle Scholar
  7. Buza N, Roque DM, Santin AD (2014) HER2/neu in endometrial cancer: a promising therapeutic target with diagnostic challenges. Arch Pathol Lab Med 138:343–350CrossRefPubMedGoogle Scholar
  8. Cancer Genome Atlas Research N, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, Benz CC, Yau C, Laird PW, Ding L, Zhang W, Mills GB, Kucherlapati R, Mardis ER, and Levine DA (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497:67–73CrossRefPubMedGoogle Scholar
  9. Chao SH, Greenleaf AL, Price DH (2001) Juglone, an inhibitor of the peptidyl-prolyl isomerase Pin1, also directly blocks transcription. Nucleic Acids Res 29:767–773CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cheaib B, Auguste A, Leary A (2015) The PI3 K/Akt/mTOR pathway in ovarian cancer: therapeutic opportunities and challenges. Chin J Cancer 34:4–16CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen J, Zhao KN, Li R, Shao R, Chen C (2014) Activation of PI3 K/Akt/mTOR pathway and dual inhibitors of PI3 K and mTOR in endometrial cancer. Curr Med Chem 21:3070–3080CrossRefPubMedGoogle Scholar
  12. Corney DC, Flesken-Nikitin A, Choi J, Nikitin AY (2008) Role of p53 and Rb in ovarian cancer. Adv Exp Med Biol 622:99–117CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cramer DW (2012) The epidemiology of endometrial and ovarian cancer. Hematol Oncol Clin North Am 26:1–12CrossRefPubMedGoogle Scholar
  14. Ding Q, Huo L, Yang JY, Xia W, Wei Y, Liao Y, Chang CJ, Yang Y, Lai CC, Lee DF, Yen CJ, Chen YJ, Hsu JM, Kuo HP, Lin CY, Tsai FJ, Li LY, Tsai CH, Hung MC (2008) Down-regulation of myeloid cell leukemia-1 through inhibiting Erk/Pin 1 pathway by sorafenib facilitates chemosensitization in breast cancer. Cancer Res 68:6109–6117CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dougherty MK, Muller J, Ritt DA, Zhou M, Zhou XZ, Copeland TD, Conrads TP, Veenstra TD, Lu KP, Morrison DK (2005) Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell 17:215–224CrossRefPubMedGoogle Scholar
  16. Echevarría-Vargas IM, Valiyeva F, Vivas-Mejía PE (2014) Upregulation of miR-21 in Cisplatin Resistant Ovarian Cancer via JNK-1/c-Jun Pathway. PLoS ONE 9:e97094CrossRefPubMedPubMedCentralGoogle Scholar
  17. Farrell AS, Pelz C, Wang X, Daniel CJ, Wang Z, Su Y, Janghorban M, Zhang X, Morgan C, Impey S, Sears RC (2013) Pin1 regulates the dynamics of c-Myc DNA binding to facilitate target gene regulation and oncogenesis. Mol Cell Biol 33:2930–2949CrossRefPubMedPubMedCentralGoogle Scholar
  18. Finn G, Lu KP (2008) Phosphorylation-specific prolyl isomerase Pin1 as a new diagnostic and therapeutic target for cancer. Curr Cancer Drug Targets 8:223–229CrossRefPubMedGoogle Scholar
  19. Fujino T, Risinger JI, Collins NK, Liu FS, Nishii H, Takahashi H, Westphal EM, Barrett JC, Sasaki H, Kohler MF Berchuck A (1994) Allelotype of endometrial carcinoma. Cancer Res 54:4294–4298PubMedGoogle Scholar
  20. Fuks F, Hurd PJ, Deplus R, Kouzarides T (2003) The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 31:2305–2312CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gasparri ML, Bardhi E, Ruscito I, Papadia A, Farooqi AA, Marchetti C, Bogani G, Ceccacci I, Mueller MD, Benedetti Panici P (2017) PI3 K/AKT/mTOR pathway in ovarian cancer treatment: are we on the right track? Geburtshilfe Frauenheilkd 77:1095–1103CrossRefPubMedPubMedCentralGoogle Scholar
  22. Girardini JE, Napoli M, Piazza S, Rustighi A, Marotta C, Radaelli E, Capaci V, Jordan L, Quinlan P, Thompson A, Mano M, Rosato A, Crook T, Scanziani E, Means AR, Lozano G, Schneider C, Del Sal G (2011) A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell 20:79–91CrossRefPubMedGoogle Scholar
  23. Gomez-Roman N, Sahasrabudhe NM, Mcgregor F, Chalmers AJ, Cassidy J, Plumb J (2016) Hypoxia-inducible factor 1 alpha is required for the tumourigenic and aggressive phenotype associated with Rab25 expression in ovarian cancer. Oncotarget 7:22650–22664CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gothel SF, Marahiel MA (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55:423–436CrossRefPubMedGoogle Scholar
  25. Guen VJ, Gamble C, Flajolet M, Unger S, Thollet A, Ferandin Y, Superti-Furga A, Cohen PA, Meijer L, Colas P (2013) CDK10/cyclin M is a protein kinase that controls ETS2 degradation and is deficient in STAR syndrome. Proc Natl Acad Sci USA 110:19525–19530CrossRefPubMedGoogle Scholar
  26. Hanes SD, Shank PR, Bostian KA (1989) Sequence and mutational analysis of ESS1, a gene essential for growth in Saccharomyces cerevisiae. Yeast 5:55–72CrossRefPubMedGoogle Scholar
  27. Hsu T, Mcrackan D, Vincent TS, Gert De Couet H (2001) Drosophila Pin1 prolyl isomerase Dodo is a MAP kinase signal responder during oogenesis. Nat Cell Biol 3:538–543CrossRefPubMedGoogle Scholar
  28. Iorns E, Turner NC, Elliott R, Syed N, Garrone O, Gasco M, Tutt AN, Crook T, Lord CJ, Ashworth A (2008) Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell 13:91–104CrossRefPubMedGoogle Scholar
  29. Jo A, Yun HJ, Kim JY, Lim SC, Choi HJ, Kang BS, Choi BY, Choi HS (2015) Prolyl isomerase PIN1 negatively regulates SGK1 stability to mediate tamoxifen resistance in breast cancer cells. Anticancer Res 35:785–794PubMedGoogle Scholar
  30. Joslyn SA (2002) Hormone receptors in breast cancer: racial differences in distribution and survival. Breast Cancer Res Treat 73:45–59CrossRefPubMedGoogle Scholar
  31. Kabel AM (2017) Tumor markers of breast cancer: new prospectives. J Oncol Sci 3:5–11Google Scholar
  32. Kanska J, Zakhour M, Taylor-Harding B, Karlan BY, Wiedemeyer WR (2016) Cyclin E as a potential therapeutic target in high grade serous ovarian cancer. Gynecol Oncol 143:152–158CrossRefPubMedGoogle Scholar
  33. Khanal P, Namgoong GM, Kang BS, Woo ER, Choi HS (2010) The prolyl isomerase Pin1 enhances HER-2 expression and cellular transformation via its interaction with mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1. Mol Cancer Ther 9:606–616CrossRefPubMedGoogle Scholar
  34. Khanal P, Yun HJ, Lim SC, Ahn SG, Yoon HE, Kang KW, Hong R, Choi HS (2012) Proyl isomerase Pin1 facilitates ubiquitin-mediated degradation of cyclin-dependent kinase 10 to induce tamoxifen resistance in breast cancer cells. Oncogene 31:3845–3856CrossRefPubMedGoogle Scholar
  35. Khanal P, Kim G, Lim SC, Yun HJ, Lee KY, Choi HK, Choi HS (2013) Prolyl isomerase Pin1 negatively regulates the stability of SUV39H1 to promote tumorigenesis in breast cancer. FASEB J 27:4606–4618CrossRefPubMedGoogle Scholar
  36. Kim MR, Choi HS, Heo TH, Hwang SW, Kang KW (2008) Induction of vascular endothelial growth factor by peptidyl-prolyl isomerase Pin1 in breast cancer cells. Biochem Biophys Res Commun 369:547–553CrossRefPubMedGoogle Scholar
  37. Kim G, Khanal P, Kim JY, Yun H-J, Lim S-C, Shim J-H, Choi HS (2015) COT phosphorylates prolyl-isomerase Pin1 to promote tumorigenesis in breast cancer. Mol Carcinog 54:440–448CrossRefPubMedGoogle Scholar
  38. Kitade S, Onoyama I, Kobayashi H, Yagi H, Yoshida S, Kato M, Tsunematsu R, Asanoma K, Sonoda K, Wake N, Hata K, Nakayama KI, Kato K (2016) FBXW7 is involved in the acquisition of the malignant phenotype in epithelial ovarian tumors. Cancer Sci 107:1399–1405CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kozono S, Lin YM, Seo HS, Pinch B, Lian X, Qiu C, Herbert MK, Chen CH, Tan L, Gao ZJ, Massefski W, Doctor ZM, Jackson BP, Chen Y, Dhe-Paganon S, Lu KP, Zhou XZ (2018) Arsenic targets Pin1 and cooperates with retinoic acid to inhibit cancer-driving pathways and tumor-initiating cells. Nat Commun 9:3069CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lam PB, Burga LN, Wu BP, Hofstatter EW, Lu KP, Wulf GM (2008) Prolyl isomerase Pin1 is highly expressed in Her2-positive breast cancer and regulates erbB2 protein stability. Mol Cancer 7:91CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lee TH, Pastorino L, Lu KP (2011) Peptidyl-prolyl cis-trans isomerase Pin1 in ageing, cancer and Alzheimer disease. Expert Rev Mol Med 13:e21CrossRefPubMedGoogle Scholar
  42. Li Y-J, Wei Z-M, Meng Y-X, Ji X-R (2005) β-catenin up-regulates the expression of cyclinD1, c-myc and MMP-7 in human pancreatic cancer: relationships with carcinogenesis and metastasis. World Journal of Gastroenterology: WJG 11:2117–2123CrossRefPubMedGoogle Scholar
  43. Li H, Shen H, Xu Q, Deng D, Wang S, Lu Y, Ma D (2006a) Expression of Pin1 and Ki67 in cervical cancer and their significance. J Huazhong Univ Sci Technolog Med Sci 26:120–122CrossRefPubMedGoogle Scholar
  44. Li H, Wang S, Zhu T, Zhou J, Xu Q, Lu Y, Ma D (2006b) Pin1 contributes to cervical tumorigenesis by regulating cyclin D1 expression. Oncol Rep 16:491–496PubMedGoogle Scholar
  45. Li HY, Xu Q, Zhu T, Zhou JH, Deng DR, Wang SX, Lu YP, and Ma D (2006c) Expression and clinical significance of Pin1 and Cyclin D1 in cervical cancer cell lines and cervical epithelial tissues. Chin J Cancer 25:367–372Google Scholar
  46. Li X, Wilmanns M, Thornton J, and Kohn M (2013) Elucidating human phosphatase-substrate networks. Sci Signal 6:rs10Google Scholar
  47. Liao Y, Wei Y, Zhou X, Yang JY, Dai C, Chen YJ, Agarwal NK, Sarbassov D, Shi D, Yu D, Hung MC (2009) Peptidyl-prolyl cis/trans isomerase Pin1 is critical for the regulation of PKB/Akt stability and activation phosphorylation. Oncogene 28:2436–2445CrossRefPubMedPubMedCentralGoogle Scholar
  48. Liao P, Zeng SX, Zhou X, Chen T, Zhou F, Cao B, Jung JH, Del Sal G, Luo S, Lu H (2017) Mutant p53 Gains Its Function via c-Myc Activation upon CDK4 Phosphorylation at Serine 249 and Consequent PIN1 Binding. Mol Cell 68(1134–1146):e1136Google Scholar
  49. Liou Y-C, Ryo A, Huang H-K, Lu P-J, Bronson R, Fujimori F, Uchida T, Hunter T, Lu KP (2002a) Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc Natl Acad Sci 99:1335–1340CrossRefPubMedGoogle Scholar
  50. Liou YC, Ryo A, Huang HK, Lu PJ, Bronson R, Fujimori F, Uchida T, Hunter T, Lu KP (2002b) Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc Natl Acad Sci USA 99:1335–1340CrossRefPubMedGoogle Scholar
  51. Liu T, Liu Y, Kao HY, Pei D (2010) Membrane permeable cyclic peptidyl inhibitors against human Peptidylprolyl Isomerase Pin1. J Med Chem 53:2494–2501CrossRefPubMedPubMedCentralGoogle Scholar
  52. Livasy CA, Moore D, Cance WG, Lininger RA (2004) Focal adhesion kinase overexpression in endometrial neoplasia. Applied immunohistochemistry & molecular morphology: AIMM 12:342–345CrossRefGoogle Scholar
  53. Lu KP, Hunter T (1995) Evidence for a NIMA-like mitotic pathway in vertebrate cells. Cell 81:413–424CrossRefPubMedGoogle Scholar
  54. Lu Z, Hunter T (2014) Prolyl isomerase Pin1 in cancer. Cell Res 24:1033–1049CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lu KP, Zhou XZ (2007) The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 8:904–916CrossRefPubMedGoogle Scholar
  56. Lu KP, Hanes SD, Hunter T (1996) A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380:544–547CrossRefPubMedGoogle Scholar
  57. Lu KP, Liou YC, Zhou XZ (2002) Pinning down proline-directed phosphorylation signaling. Trends Cell Biol 12:164–172CrossRefPubMedGoogle Scholar
  58. Lu X, Mazur SJ, Lin T, Appella E, Xu Y (2013) The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis. Oncogene 33:2655CrossRefPubMedPubMedCentralGoogle Scholar
  59. Lu Z, Chen H, Zheng XM, Chen ML (2017) Experimental study on the apoptosis of cervical cancer Hela cells induced by juglone through c-Jun N-terminal kinase/c-Jun pathway. Asian Pac J Trop Med 10:572–575CrossRefPubMedGoogle Scholar
  60. Lucchetti C, Caligiuri I, Toffoli G, Giordano A, Rizzolio F (2013) The prolyl isomerase Pin1 acts synergistically with CDK2 to regulate the basal activity of estrogen receptor alpha in breast cancer. PLoS ONE 8:e55355CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lufei C, Koh TH, Uchida T, Cao X (2007) Pin1 is required for the Ser727 phosphorylation-dependent Stat3 activity. Oncogene 26:7656–7664CrossRefPubMedGoogle Scholar
  62. Luo H, Xu X, Ye M, Sheng B, Zhu X (2018) The prognostic value of HER2 in ovarian cancer: a meta-analysis of observational studies. PLoS ONE 13:e0191972CrossRefPubMedPubMedCentralGoogle Scholar
  63. Macdonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26CrossRefPubMedPubMedCentralGoogle Scholar
  64. Mackintosh ML, Derbyshire AE, Mcvey RJ, Bolton J, Nickkho-Amiry M, Higgins CL, Kamieniorz M, Pemberton PW, Kirmani BH, Ahmed B, Syed AA, Ammori BJ, Renehan AG, Kitchener HC, and Crosbie EJ (2018) The impact of obesity and bariatric surgery on circulating and tissue biomarkers of endometrial cancer risk. Int J CancerGoogle Scholar
  65. Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21:283–296CrossRefPubMedPubMedCentralGoogle Scholar
  66. Marone M, Scambia G, Giannitelli C, Ferrandina G, Masciullo V, Bellacosa A, Benedetti-Panici P, Mancuso S (1998) Analysis of cyclin E and CDK2 in ovarian cancer: gene amplification and RNA overexpression. Int J Cancer 75:34–39CrossRefPubMedGoogle Scholar
  67. Martin GS (2003) Cell signaling and cancer. Cancer cell 4:167–174CrossRefPubMedGoogle Scholar
  68. Matsumoto-Taniura N, Pirollet F, Monroe R, Gerace L, Westendorf JM (1996) Identification of novel M phase phosphoproteins by expression cloning. Mol Biol Cell 7:1455–1469CrossRefPubMedPubMedCentralGoogle Scholar
  69. Mcphillips F, Mullen P, Macleod KG, Sewell JM, Monia BP, Cameron DA, Smyth JF, Langdon SP (2006) Raf-1 is the predominant Raf isoform that mediates growth factor-stimulated growth in ovarian cancer cells. Carcinogenesis 27:729–739CrossRefPubMedGoogle Scholar
  70. Melhem A, Yamada SD, Fleming GF, Delgado B, Brickley DR, Wu W, Kocherginsky M, Conzen SD (2009) Administration of glucocorticoids to ovarian cancer patients is associated with expression of the anti-apoptotic genes SGK1 and MKP1/DUSP1 in ovarian tissues. Clin Cancer Res 15:3196–3204CrossRefPubMedPubMedCentralGoogle Scholar
  71. Min SH, Lau AW, Lee TH, Inuzuka H, Wei S, Huang P, Shaik S, Lee DY, Finn G, Balastik M, Chen CH, Luo M, Tron AE, Decaprio JA, Zhou XZ, Wei W, Lu KP (2012) Negative regulation of the stability and tumor suppressor function of Fbw7 by the Pin1 prolyl isomerase. Mol Cell 46:771–783CrossRefPubMedPubMedCentralGoogle Scholar
  72. Moore JD, Potter A (2013) Pin1 inhibitors: pitfalls, progress and cellular pharmacology. Bioorg Med Chem Lett 23:4283–4291CrossRefPubMedGoogle Scholar
  73. Moretto-Zita M, Jin H, Shen Z, Zhao T, Briggs SP, Xu Y (2010) Phosphorylation stabilizes Nanog by promoting its interaction with Pin1. Proc Natl Acad Sci USA 107:13312–13317CrossRefPubMedGoogle Scholar
  74. Morin PJ (1999) beta-catenin signaling and cancer. BioEssays 21:1021–1030CrossRefPubMedGoogle Scholar
  75. Movva S, Rodriguez L, Arias-Pulido H, Verschraegen C (2009) Novel chemotherapy approaches for cervical cancer. Cancer 115:3166–3180CrossRefPubMedGoogle Scholar
  76. Nakano A, Koinuma D, Miyazawa K, Uchida T, Saitoh M, Kawabata M, Hanai J, Akiyama H, Abe M, Miyazono K, Matsumoto T, Imamura T (2009a) Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins. J Biol Chem 284:6109–6115CrossRefPubMedGoogle Scholar
  77. Nakano A, Koinuma D, Miyazawa K, Uchida T, Saitoh M, Kawabata M, Hanai J-I, Akiyama H, Abe M, Miyazono K, Matsumoto T, Imamura T (2009b) Pin1 Down-regulates Transforming Growth Factor-β (TGF-β) Signaling by Inducing Degradation of Smad Proteins. J Biol Chem 284:6109–6115CrossRefPubMedGoogle Scholar
  78. Namgoong GM, Khanal P, Cho HG, Lim SC, Oh YK, Kang BS, Shim JH, Yoo JC, Choi HS (2010) The prolyl isomerase Pin1 induces LC-3 expression and mediates tamoxifen resistance in breast cancer. J Biol Chem 285:23829–23841CrossRefPubMedPubMedCentralGoogle Scholar
  79. Nishi H, Shaytan A, Panchenko AR (2014) Physicochemical mechanisms of protein regulation by phosphorylation. Front Genet 5:270CrossRefPubMedPubMedCentralGoogle Scholar
  80. Park S-H, Cheung LWT, Wong AST, Leung PCK (2008) Estrogen Regulates Snail and Slug in the Down-Regulation of E-Cadherin and Induces Metastatic Potential of Ovarian Cancer Cells through Estrogen Receptor α. Mol Endocrinol 22:2085–2098CrossRefPubMedPubMedCentralGoogle Scholar
  81. Parkin DM, and Bray F (2006) Chapter 2: The burden of HPV-related cancers. Vaccine 24 Suppl 3: S3/11-25Google Scholar
  82. Pastorino L, Sun A, Lu PJ, Zhou XZ, Balastik M, Finn G, Wulf G, Lim J, Li SH, Li X, Xia W, Nicholson LK, Lu KP (2006) The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature 440:528–534CrossRefPubMedGoogle Scholar
  83. Pawson T (1995) Protein modules and signalling networks. Nature 373:573–580CrossRefPubMedGoogle Scholar
  84. Pelech SL (1995) Networking with proline-directed protein kinases implicated in tau phosphorylation. Neurobiol Aging 16:247–256; (discussion 257–261)Google Scholar
  85. Qin S, Li Y, Cao X, Du J, and Huang X (2017) NANOG regulates epithelial-mesenchymal transition and chemoresistance in ovarian cancer. Bioscience reports 37: BSR20160247Google Scholar
  86. Rajbhandari P, Finn G, Solodin NM, Singarapu KK, Sahu SC, Markley JL, Kadunc KJ, Ellison-Zelski SJ, Kariagina A, Haslam SZ, Lu KP, Alarid ET (2012) Regulation of estrogen receptor alpha N-terminus conformation and function by peptidyl prolyl isomerase Pin1. Mol Cell Biol 32:445–457CrossRefPubMedPubMedCentralGoogle Scholar
  87. Rajbhandari P, Schalper KA, Solodin NM, Ellison-Zelski SJ, Ping LuK, Rimm DL, Alarid ET (2014) Pin1 modulates ERalpha levels in breast cancer through inhibition of phosphorylation-dependent ubiquitination and degradation. Oncogene 33:1438–1447CrossRefPubMedGoogle Scholar
  88. Ranganathan P, Weaver KL, Capobianco AJ (2011) Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer 11:338–351CrossRefPubMedGoogle Scholar
  89. Rechsteiner M, Zimmermann AK, Wild PJ, Caduff R, Von Teichman A, Fink D, Moch H, Noske A (2013) TP53 mutations are common in all subtypes of epithelial ovarian cancer and occur concomitantly with KRAS mutations in the mucinous type. Exp Mol Pathol 95:235–241CrossRefPubMedGoogle Scholar
  90. Reyes-Gonzalez JM, Armaiz-Pena GN, Mangala LS, Valiyeva F, Ivan C, Pradeep S, Echevarria-Vargas IM, Rivera-Reyes A, Sood AK, Vivas-Mejia PE (2015) Targeting c-MYC in Platinum-Resistant Ovarian Cancer. Mol Cancer Ther 14:2260–2269CrossRefPubMedPubMedCentralGoogle Scholar
  91. Rizzolio F, Lucchetti C, Caligiuri I, Marchesi I, Caputo M, Klein-Szanto AJ, Bagella L, Castronovo M, Giordano A (2012) Retinoblastoma tumor-suppressor protein phosphorylation and inactivation depend on direct interaction with Pin1. Cell Death Differ 19:1152–1161CrossRefPubMedPubMedCentralGoogle Scholar
  92. Rodrigues C, Pattabiraman C, Mysore Narayana S, V Kumar R, Notani D, Varga-Weisz P, and Krishna S (2018) A Suv39H1-low chromatin state drives migratory cell populations in cervical cancers. bioRxivGoogle Scholar
  93. Rodriguez-Garcia A, Minutolo NG, Robinson JM, Powell DJ (2017) T-cell target antigens across major gynecologic cancers. Gynecol Oncol 145:426–435CrossRefPubMedGoogle Scholar
  94. Rong C, Feng Y, Ye Z (2017) Notch is a critical regulator in cervical cancer by regulating Numb splicing. Oncology letters 13:2465–2470CrossRefPubMedPubMedCentralGoogle Scholar
  95. Rongrong Yan XW, Yongmei Wang, Chunli Yu, Hua Li, Lan Zhang (2017) Overexpression of peptidyl-prolyl isomerase 1 (Pin1) and cyclin D1 in endometrial cancerGoogle Scholar
  96. Rose SL, Kunnimalaiyaan M, Drenzek J, Seiler N (2010) Notch 1 signaling is active in ovarian cancer. Gynecol Oncol 117:130–133CrossRefPubMedGoogle Scholar
  97. Roskoski R Jr (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66:105–143CrossRefPubMedGoogle Scholar
  98. Russo Spena C, De Stefano L, Palazzolo S, Salis B, Granchi C, Minutolo F, Tuccinardi T, Fratamico R, Crotti S, D’aronco S, Agostini M, Corona G, Caligiuri I, Canzonieri V, Rizzolio F (2018) Liposomal delivery of a Pin1 inhibitor complexed with cyclodextrins as new therapy for high-grade serous ovarian cancer. J Control Release 281:1–10CrossRefPubMedGoogle Scholar
  99. Rustighi A, Tiberi L, Soldano A, Napoli M, Nuciforo P, Rosato A, Kaplan F, Capobianco A, Pece S, Di Fiore PP, Del Sal G (2009) The prolyl-isomerase Pin1 is a Notch1 target that enhances Notch1 activation in cancer. Nat Cell Biol 11:133–142CrossRefPubMedGoogle Scholar
  100. Rustighi A, Zannini A, Tiberi L, Sommaggio R, Piazza S, Sorrentino G, Nuzzo S, Tuscano A, Eterno V, Benvenuti F, Santarpia L, Aifantis I, Rosato A, Bicciato S, Zambelli A, Del Sal G (2014) Prolyl-isomerase Pin1 controls normal and cancer stem cells of the breast. EMBO Mol Med 6:99–119CrossRefPubMedGoogle Scholar
  101. Rustighi A, Zannini A, Campaner E, Ciani Y, Piazza S, Del Sal G (2016) PIN1 in breast development and cancer: a clinical perspective. Cell Death Differ 24:200CrossRefPubMedPubMedCentralGoogle Scholar
  102. Ryo A, Nakamura M, Wulf G, Liou YC, Lu KP (2001) Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nat Cell Biol 3:793–801CrossRefPubMedGoogle Scholar
  103. Ryo A, Liou YC, Wulf G, Nakamura M, Lee SW, Lu KP (2002) PIN1 is an E2F target gene essential for Neu/Ras-induced transformation of mammary epithelial cells. Mol Cell Biol 22:5281–5295CrossRefPubMedPubMedCentralGoogle Scholar
  104. Ryo A, Suizu F, Yoshida Y, Perrem K, Liou YC, Wulf G, Rottapel R, Yamaoka S, Lu KP (2003) Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell 12:1413–1426CrossRefPubMedGoogle Scholar
  105. Ryo A, Wulf G, Lee TH, Lu KP (2009) Pinning down HER2-ER crosstalk in SMRT regulation. Trends Biochem Sci 34:162–165CrossRefPubMedGoogle Scholar
  106. Sacco F, Perfetto L, Castagnoli L, Cesareni G (2012) The human phosphatase interactome: an intricate family portrait. FEBS Lett 586:2732–2739CrossRefPubMedPubMedCentralGoogle Scholar
  107. Saini U, Naidu S, Elnaggar AC, Bid HK, Wallbillich JJ, Bixel K, Bolyard C, Suarez AA, Kaur B, Kuppusamy P, Hays J, Goodfellow PJ, Cohn DE, Selvendiran K (2017) Elevated STAT3 expression in ovarian cancer ascites promotes invasion and metastasis: a potential therapeutic target. Oncogene 36:168–181CrossRefPubMedGoogle Scholar
  108. Schmid S, Bieber M, Zhang F, Zhang M, He B, Jablons D, Teng NN (2011) Wnt and hedgehog gene pathway expression in serous ovarian cancer. Int J Gynecol Cancer 21:975–980CrossRefPubMedPubMedCentralGoogle Scholar
  109. Schwartz PA, Murray BW (2011) Protein kinase biochemistry and drug discovery. Bioorg Chem 39:192–210CrossRefPubMedGoogle Scholar
  110. Seeber LM, Horrée N, Van Der Groep P, Van Der Wall E, Verheijen RH, Van Diest PJ (2010) Necrosis related HIF-1α expression predicts prognosis in patients with endometrioid endometrial carcinoma. BMC Cancer 10:307CrossRefPubMedPubMedCentralGoogle Scholar
  111. Shigemasa K, Katoh O, Shiroyama Y, Mihara S, Mukai K, Nagai N, Ohama K (2002) Increased MCL-1 expression is associated with poor prognosis in ovarian carcinomas. Jpn J Cancer Res 93:542–550CrossRefPubMedPubMedCentralGoogle Scholar
  112. Singh N, Sobti RC, Suri V, Nijhawan R, Sharma S, Das BC, Bharadwaj M, Hussain S (2013) Downregulation of tumor suppressor gene PML in uterine cervical carcinogenesis: impact of human papillomavirus infection (HPV). Gynecol Oncol 128:420–426CrossRefPubMedGoogle Scholar
  113. Society AC cancer facts and figures. In Society, A. C. (Ed.). American Cancer Society, (2018)Google Scholar
  114. Sonoda K (2016) Molecular biology of gynecological cancer. Oncol Lett 11:16–22CrossRefPubMedGoogle Scholar
  115. Stanya KJ, Liu Y, Means AR, Kao HY (2008) Cdk2 and Pin1 negatively regulate the transcriptional corepressor SMRT. J Cell Biol 183:49–61CrossRefPubMedPubMedCentralGoogle Scholar
  116. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45CrossRefPubMedGoogle Scholar
  117. Subramaniam KS, Omar IS, Kwong SC, Mohamed Z, Woo YL, Mat Adenan NA, Chung I (2016) Cancer-associated fibroblasts promote endometrial cancer growth via activation of interleukin-6/STAT-3/c-Myc pathway. Am J Cancer Res 6:200–213PubMedPubMedCentralGoogle Scholar
  118. Sun X, Liu Y (2017) Activation of the Wnt/beta-catenin signaling pathway may contribute to cervical cancer pathogenesis via upregulation of Twist. Oncol Lett 14:4841–4844CrossRefPubMedPubMedCentralGoogle Scholar
  119. Takahashi K, Akiyama H, Shimazaki K, Uchida C, Akiyama-Okunuki H, Tomita M, Fukumoto M, Uchida T (2007) Ablation of a peptidyl prolyl isomerase Pin1 from p53-null mice accelerated thymic hyperplasia by increasing the level of the intracellular form of Notch1. Oncogene 26:3835–3845CrossRefPubMedGoogle Scholar
  120. Tecimer C, Doering DL, Goldsmith LJ, Meyer JS, Abdulhay G, Wittliff JL (2001) Clinical relevance of urokinase-type plasminogen activator, its receptor, and its inhibitor type 1 in endometrial cancer. Gynecol Oncol 80:48–55CrossRefPubMedGoogle Scholar
  121. Tian Y, Zhang Y, Yu J, Zhang Y (2013) Expression of pin1 in endometrial carcinoma and its relation with PR. Nan Fang Yi Ke Da Xue Xue Bao 33:1403–1406PubMedGoogle Scholar
  122. Wang L, Di LJ (2014) BRCA1 and estrogen/estrogen receptor in breast cancer: where they interact? Int J Biol Sci 10:566–575CrossRefPubMedPubMedCentralGoogle Scholar
  123. Wei S, Kozono S, Kats L, Nechama M, Li W, Guarnerio J, Luo M, You MH, Yao Y, Kondo A, Hu H, Bozkurt G, Moerke NJ, Cao S, Reschke M, Chen CH, Rego EM, Lo-Coco F, Cantley LC, Lee TH, Wu H, Zhang Y, Pandolfi PP, Zhou XZ, Lu KP (2015) Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer. Nat Med 21:457–466CrossRefPubMedPubMedCentralGoogle Scholar
  124. Wierod L, Rosseland CM, Lindeman B, Oksvold MP, Grosvik H, Skarpen E, Huitfeldt HS (2007) CDK2 regulation through PI3 K and CDK4 is necessary for cell cycle progression of primary rat hepatocytes. Cell Prolif 40:475–487CrossRefPubMedGoogle Scholar
  125. Wulf GM, Ryo A, Wulf GG, Lee SW, Niu T, Petkova V, Lu KP (2001) Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J 20:3459–3472CrossRefPubMedPubMedCentralGoogle Scholar
  126. Wulf GM, Liou YC, Ryo A, Lee SW, Lu KP (2002) Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J Biol Chem 277:47976–47979CrossRefPubMedGoogle Scholar
  127. Wulf G, Ryo A, Liou Y-C, and Ping Lu K (2003) The prolyl isomerase Pin1 in breast development and cancer. Breast Cancer Research 5Google Scholar
  128. Wulf G, Garg P, Liou YC, Iglehart D, Lu KP (2004) Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J 23:3397–3407CrossRefPubMedPubMedCentralGoogle Scholar
  129. Xu YX, Manley JL (2007) The prolyl isomerase Pin1 functions in mitotic chromosome condensation. Mol Cell 26:287–300CrossRefPubMedGoogle Scholar
  130. Xu Y, Yu J, Liu T, Meng F, Kong D, Lou G (2016) Loss of FBXW7 is related to the susceptibility and poor prognosis of cervical squamous carcinoma. Biomarkers 21:379–385CrossRefPubMedGoogle Scholar
  131. Yan RR, Wu XG, Wang YM, Yu CL, Li H, Zhang L (2017) Overexpression of peptidyl-prolyl isomerase 1 (Pin1) and cyclin D1 in endometrial cancer. Int J Clin Exp Patho 10:3335–3343Google Scholar
  132. Yeh ES, Means AR (2007) PIN1, the cell cycle and cancer. Nat Rev Cancer 7:381CrossRefPubMedGoogle Scholar
  133. Yi P, Wu RC, Sandquist J, Wong J, Tsai SY, Tsai MJ, Means AR, O’malley BW (2005) Peptidyl-prolyl isomerase 1 (Pin1) serves as a coactivator of steroid receptor by regulating the activity of phosphorylated steroid receptor coactivator 3 (SRC-3/AIB1). Mol Cell Biol 25:9687–9699CrossRefPubMedPubMedCentralGoogle Scholar
  134. Yun HJ, Kim JY, Kim G, Choi HS (2014) Prolyl-isomerase Pin1 impairs trastuzumab sensitivity by up-regulating fatty acid synthase expression. Anticancer Res 34:1409–1416PubMedGoogle Scholar
  135. Zacchi P, Gostissa M, Uchida T, Salvagno C, Avolio F, Volinia S, Ronai Z, Blandino G, Schneider C, Del Sal G (2002) The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419:853–857CrossRefPubMedGoogle Scholar
  136. Zhang T, Zhao C, Luo L, Zhao H, Cheng J, Xu F (2012) The expression of Mcl-1 in human cervical cancer and its clinical significance. Med Oncol (Northwood, London, England) 29:1985–1991CrossRefGoogle Scholar
  137. Zhang Y, Zhao D, Gong C, Zhang F, He J, Zhang W, Zhao Y, Sun J (2015) Prognostic role of hormone receptors in endometrial cancer: a systematic review and meta-analysis. World J Surg Oncol 13:208CrossRefPubMedPubMedCentralGoogle Scholar
  138. Zheng H, You H, Zhou XZ, Murray SA, Uchida T, Wulf G, Gu L, Tang X, Lu KP, Xiao ZX (2002) The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419:849–853CrossRefPubMedGoogle Scholar
  139. Zheng Y, Yang W, Xia Y, Hawke D, Liu DX, Lu Z (2011) Ras-induced and extracellular signal-regulated kinase 1 and 2 phosphorylation-dependent isomerization of protein tyrosine phosphatase (PTP)-PEST by PIN1 promotes FAK dephosphorylation by PTP-PEST. Mol Cell Biol 31:4258–4269CrossRefPubMedPubMedCentralGoogle Scholar
  140. Zhou XZ, Lu KP (2016) The isomerase PIN1 controls numerous cancer-driving pathways and is a unique drug target. Nat Rev Cancer 16:463CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2019

Authors and Affiliations

  • Garam Kim
    • 1
  • Poshan Yugal Bhattarai
    • 1
  • Hong Seok Choi
    • 1
    Email author
  1. 1.College of PharmacyChosun UniversityGwangjuRepublic of Korea

Personalised recommendations