Advertisement

Archives of Pharmacal Research

, Volume 41, Issue 3, pp 251–258 | Cite as

Identification of N-arylsulfonylpyrimidones as anticancer agents

  • Santhosh Subramanian
  • Pulla Reddy Boggu
  • Jieun Yun
  • Sang-Hun JungEmail author
Research Article
  • 266 Downloads

Abstract

For confirming the role of five membered ring of imidazolidinone moiety of N-arylsulfonylimidazolidinones (7) previously reported with highly potent anticancer agent, a series of N-arylsulfonylpyrimidones (10a–g) and N-arylsulfonyltetrahydropyrimidones (11a–e) were prepared and their anti-proliferating activity was measured against human cancer cell lines (renal ACHN, colon HCT-15, breast MDA-MB-231, lung NCI-H23, stomach NUGC-3, and prostate PC-3) using XTT assay. Among them, 1-(1-acetylindolin-5-ylsulfonyl)-4-phenyltetrahydropyrimidin-2(1H)-one (11d, mean GI50 = 3.50 µM) and ethyl 5-(2-oxo-4-phenyltetrahydropyrimidin-1(2H)-ylsulfonyl)-indoline-1-carboxylate (11e, mean GI50 = 0.26 µM) showed best growth inhibitory activity against human cancer cell lines. Considering the activity results, N-arylsulfonyltetrahydropyrimidones (11) exhibited more potent activity compared to N-arylsulfonylpyrimidones (10) and comparable activity to N-arylsulfonylimidazolidinones (7). Especially, tetrahydropyrimidin-2(1H)-one analogs containing acylindolin-5-ylsulfonyl moiety at position 1 demonstrated their strong growth inhibitory activity against human cancer cell lines.

Keywords

N-arylsulfonylpyrimidones N-arylsulfonyltetrahydropyrimidones Anticancer activity Antimitotic agent 

Notes

Acknowledgement

This work was supported by Research Fund of the Chungnam National University.

Supplementary material

12272_2018_1003_MOESM1_ESM.docx (685 kb)
Supplementary material 1 (DOCX 684 kb)

References

  1. Choo HYP, Choi S, Jung SH, Koh HY, Pae AN (2003) The 3D-QSAR study of antitumor arylsulfonylimidazolidinone derivatives by CoMFA and CoMSIA. Bioorg Med Chem 11:4585–4589.  https://doi.org/10.1016/S0968-0896(03)00530-3 CrossRefPubMedGoogle Scholar
  2. Desai A, Mitchison TJ (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117.  https://doi.org/10.1146/annurev.cellbio.13.1.83 CrossRefPubMedGoogle Scholar
  3. Erickson HP, O’Brien ET (1992) Microtubule dynamic instability and GTP hydrolysis. Annu Rev Biophys Biomol Struct 21:145–166.  https://doi.org/10.1146/annurev.bb.21.060192.001045 CrossRefPubMedGoogle Scholar
  4. Geneste H, Backfisch G, Braje W, Delzer J, Haupt A, Hutchins CW, King LL,  Lubisch W, Steiner G, Teschendorf H-J, Unger L, Wernet W (2006) Synthesis and SAR of highly potent and selective dopamine D3-receptor antagonists: quinolin(di)one and benzazepin(di)one derivatives. Bioorg Med Chem Lett 16:658–662.  https://doi.org/10.1016/j.bmcl.2005.10.035 CrossRefPubMedGoogle Scholar
  5. Germann UA (1996) P-glycoprotein-A mediator of multidrug resistance in tumour cells. Eur J Cancer 32A:927–944CrossRefPubMedGoogle Scholar
  6. Hammond JW, Cai D, Verhey KJ (2008) Tubulin modifications and their cellular functions. Curr Opin Cell Biol 20:71–76.  https://doi.org/10.1016/j.ceb.2007.11.010 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Jung S-H, Kwak S-J (1997) Planar structural requirement at 4-position of 1-arylsulfonyl- 4-phenyl-4,5-dihydro-2-imidazolones for their cytotoxicity. Arch Pharm Res 20:283–287CrossRefPubMedGoogle Scholar
  8. Jung S-H, Song J-S, Lee H-S, Choi SU, Lee CO (1996a) Synthesis and evaluation of cytotoxicity of novel arylsulfonylimidazolidinones containing sulfonylurea pharmacophore. Arch Pharm Res 19:570–580.  https://doi.org/10.1007/BF02986031 CrossRefGoogle Scholar
  9. Jung S-H, Song J-S, Lee H-S, Choi SU, Lee CO (1996b) Synthesis and evaluation of cytotoxic activity of novel arylsulfonylimidazolidinones. Bioorg Med Chem Lett 6:2553–2558CrossRefGoogle Scholar
  10. Jung S-H, Lee H-S, Song J-S, Kim H-M, Han S-B, Lee C-W, Lee M, Choi D-R, Lee J-A, Chung Y-H, Yoon S-J, Moon E-Y, Hwang H-S, Seong S-K, Lee D-K (1998) Synthesis and antitumor activity of 4-phenyl-1-arylsulfonyl imidazolidinones. Bioorg Med Chem Lett 8:1547–1550CrossRefPubMedGoogle Scholar
  11. Jung S-H, Kwak S-J, Kim ND, Lee S-U, Lee C-O (2000) Stereochemical requirement at 4-position of 4-phenyl-1-arylsulfonylimidazolidinones for their cytotoxicities. Arch Pharm Res 23:35–41CrossRefPubMedGoogle Scholar
  12. Jung S-H, Park K-L, Lee H-S, Whang J-S (2001) Evaluation of the role of imidazolidinone motif of antineoplas-tic 4-phenyl-1-arylsulfonylimidazolidinones using 4-phenyl-2-aryl-sulfonyloxazolines. Arch Pharm Res 24:499–502.  https://doi.org/10.1007/BF02975152 CrossRefPubMedGoogle Scholar
  13. Jung S-H, Lee H-S, Kim N-S, Kim H-M, Lee M, Choi D-R, Lee J-A, Chung Y-H, Moon E-Y, Hwang H-S, Seong S-K, Lee D-K (2004) Synthesis and cytotoxic activity of 1-(1-benzoylindoline-5-sulfonyl)-4-phenylimidazolidinones. Arch Pharm Res 27:478–484CrossRefPubMedGoogle Scholar
  14. Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 10:194–204.  https://doi.org/10.1038/nrc2803 CrossRefPubMedGoogle Scholar
  15. Kim I-W, Jung S-H (2002) Recognition of the importance of imidazolidinone motif for cytotoxicity of 4-phenyl-1-arylsulfonylimidazolidinones using thiadiazolidine-1,1 -dioxide analogs. Arch Pharm Res 25:421–427.  https://doi.org/10.1007/BF02976594 CrossRefPubMedGoogle Scholar
  16. Kim I-W, Lee C-K, Kim HS, Jung S-H (2003) Importance of sulfonylimidazolidinone motif of 4-phenyl-1-arylsulfonylimidazolidinones for their cytotoxicity: synthesis of 2-benzoyl-4-phenyl[1,2,5]thiazolidine-1,1-dioxides and their cytotoxcity. Arch Pharm Res 26:9–14.  https://doi.org/10.1007/BF03179923 CrossRefPubMedGoogle Scholar
  17. Lee H-S, Park K-L, Choi S-U, Lee C-O, Jung S-H (2000) Effect of substituents on benzenesulfonyl motif of 4-phenyl-1-arylsulfonylimidazolidinones for their cytotoxicity. Arch Pharm Res 23:579–584.  https://doi.org/10.1007/BF02975244 CrossRefPubMedGoogle Scholar
  18. Lee K-C, Tuan L, Hoang A, Jung S-H (2006) Evaluation of anticancer activity of 4-vinyl-1-arylsulfonylimida- zolidinones. Arch Pharm Res 29:721–727CrossRefPubMedGoogle Scholar
  19. Lehnert M (1996) Clinical multidrug resistance in cancer: a multifactorial problem. Eur J Cancer 32A:912–920CrossRefPubMedGoogle Scholar
  20. Nogales E, Wang HW (2006) Structural intermediates in microtubule assembly and disassembly: how and why? Curr Opin Cell Biol 18:179–184.  https://doi.org/10.1016/j.ceb.2006.02.009 CrossRefPubMedGoogle Scholar
  21. Purich DL, Kristofferson D (1984) Microtubule assembly: a review of progress, principles, and perspectives. Adv Protein Chem 36:133–212CrossRefPubMedGoogle Scholar
  22. Sackett DL (1993) Podophyllotoxin, steganacin and combretastatin: natural products that bind at the colchicine site of tubulin. Pharmacol Ther 59:163–228CrossRefPubMedGoogle Scholar
  23. Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR (1988) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48:4827–4833PubMedGoogle Scholar
  24. Sharma VK, Lee K-C, Venkateswararao E, Joo C, Kim M-S, Sharma N, Jung S-H (2011) Structure-activity relationship study of arylsulfonylimidazolidinones as anticancer agents. Bioorg Med Chem Lett 21:6829–6832.  https://doi.org/10.1016/j.bmcl.2011.09.025 CrossRefPubMedGoogle Scholar
  25. Subramanian S, Kim N-S, Thanigaimalai P, Sharma VK, Lee K-C, Kang JS, Kim H-M, Jung S-H (2011) Structure-activity relationship studies of novel arylsulfonylimidazolidinones for their anticancer activity. Eur J Med Chem 46:3258–3264.  https://doi.org/10.1016/j.ejmech.2011.04.042 CrossRefPubMedGoogle Scholar
  26. Subramanian S, Sharma VK, Yun J, Jung S-H (2014) Exploration of isosteric replacement of imidazolidinone motif in 4-phenyl-1-arylsul-fonylimidazolidinone with pyrazole and pyrazolidinone for cytotoxicity. Bull Korean Chem Soc 35:2922–2928.  https://doi.org/10.5012/bkcs.2014.35.10.2922 CrossRefGoogle Scholar
  27. Subramanian S, Yang H-S, Manickam M, Yun J, Jung S-H (2016) Investigation of N-arylsulfonylimidazole as novel scaffold for anticancer agents. Bull Korean Chem Soc 37:632–637.  https://doi.org/10.1002/bkcs.10734 CrossRefGoogle Scholar
  28. Yin S, Bhattacharya R, Cabral F (2010) Human mutations that confer paclitaxel resistance. Mol Cancer Ther 9:327–335.  https://doi.org/10.1158/1535-7163.MCT-09-0674 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Yoon SJ, Chung YH, Lee MS, Choi DR, Lee HS, Yun HR, Lee DK, Moon EY, Hwang HS, Choi CH, Jung S-H (1999) Arylsulfonylimidazolone derivs. as an antitumor agent. US patent 592910327Google Scholar

Copyright information

© The Pharmaceutical Society of Korea 2018

Authors and Affiliations

  • Santhosh Subramanian
    • 1
  • Pulla Reddy Boggu
    • 1
  • Jieun Yun
    • 2
  • Sang-Hun Jung
    • 1
    Email author
  1. 1.College of Pharmacy and Institute of Drug Research and DevelopmentChungnam National UniversityDaejeonRepublic of Korea
  2. 2.Department of Pharmaceutical EngineeringCheongju UniversityCheongjuRepublic of Korea

Personalised recommendations