Archives of Pharmacal Research

, Volume 42, Issue 1, pp 1–13 | Cite as

Tumor endothelial cells as a potential target of metronomic chemotherapy

  • Ji Yoon Kim
  • Young-Myeong KimEmail author


Drug resistance and toxic side effects are major therapeutic hurdles affecting cancer patients receiving conventional chemotherapy based on the maximum tolerated dose. Metronomic chemotherapy (MCT), a new therapeutic approach developed to avoid these problems generally, consists of the continuous administration of low-dose cytotoxic agents without extended intervals. This therapy targets the tumor microenvironment, rather than exerting a direct effect on tumor cells. As a result, the MCT regimen functionally impairs tumor endothelial cells and circulating endothelial progenitor cells, leading to tumor dormancy via anti-angiogenesis. Over the past 10 years, several studies have highlighted the impact of MCT on the tumor microenvironment and angiogenesis and demonstrated its potential as a switch from the pro-angiogenic to the anti-angiogenic state. However, the mechanisms of action are still obscure. Here, we systematically review the evidence regarding the anti-angiogenic potential of MCT as a crucial determinant of tumor dormancy and cancer treatment.


Tumor Metronomic chemotherapy Endothelial cells Angiogenesis Vessel normalization 



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2017R1A2B3004565).

Compliance with Ethical Standards

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. Aird WC (2006) Mechanisms of endothelial cell heterogeneity in health and disease. Circ Res 98:159–162CrossRefGoogle Scholar
  2. Allegrini G, Falcone A, Fioravanti A, Barletta MT, Orlandi P, Loupakis F, Cerri E, Masi G, Di Paolo A, Kerbel RS, Danesi R, Del Tacca M, Bocci G (2008) A pharmacokinetic and pharmacodynamic study on metronomic irinotecan in metastatic colorectal cancer patients. Br J Cancer 98:1312–1319CrossRefGoogle Scholar
  3. Allegrini G, Di Desidero T, Barletta MT, Fioravanti A, Orlandi A, Canu B, Chericoni S, Loupakis F, Di Paolo A, Masi G, Fontana A, Lucchesi S, Arrighi G, Giusiani M, Ciarlo A, Brandi G, Danesi R, Kerbel RS, Falcone A, Bocci G (2012) Clinical, pharmacokinetic and pharmacodynamic evaluations of metronomic UFT and cyclophosphamide plus celecoxib in patients with advanced refractory gastrointestinal cancers. Angiogenesis 15:275–286CrossRefGoogle Scholar
  4. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967CrossRefGoogle Scholar
  5. Baek YY, Lee DK, Kim J, Kim JH, Park W, Kim T, Han S, Jeoung D, You JC, Lee H, Won MH, Ha KS, Kwon YG, Kim YM (2017) Arg-Leu-Tyr-Glu tetrapeptide inhibits tumor progression by suppressing angiogenesis and vascular permeability via VEGF receptor-2 antagonism. Oncotarget 8:11763–11777Google Scholar
  6. Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15:102–111CrossRefGoogle Scholar
  7. Bazzola L, Foroni C, Andreis D, Zanoni V, Cappelletti MR, Allevi G, Aguggini S, Strina C, Milani M, Venturini S, Ferrozzi F, Giardini R, Bertoni R, Turley H, Gatter K, Petronini PG, Fox SB, Harris AL, Martinotti M, Berruti A, Bottini A, Reynolds AR, Generali D (2015) Combination of letrozole, metronomic cyclophosphamide and sorafenib is well-tolerated and shows activity in patients with primary breast cancer. Br J Canc 112:52–60CrossRefGoogle Scholar
  8. Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N (1996) Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 15:658–664CrossRefGoogle Scholar
  9. Bocci G, Nicolaou KC, Kerbel RS (2002) Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res 62:6938–6943Google Scholar
  10. Bocci G, Francia G, Man S, Lawler J, Kerbel RS (2003) Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci USA 100:12917–12922CrossRefGoogle Scholar
  11. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O’Reilly MS, Folkman J (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:1878–1886Google Scholar
  12. Calleri A, Bono A, Bagnardi V, Quarna J, Mancuso P, Rabascio C, Dellapasqua S, Campagnoli E, Shaked Y, Goldhirsch A, Colleoni M, Bertolini F (2009) Predictive potential of angiogenic growth factors and circulating endothelial cells in breast cancer patients receiving metronomic chemotherapy plus bevacizumab. Clin Canc Res 15:7652–7657CrossRefGoogle Scholar
  13. Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10:417–427CrossRefGoogle Scholar
  14. Catalano V, Turdo A, Di Franco S, Dieli F, Todaro M, Stassi G (2013) Tumor and its microenvironment: a synergistic interplay. Semin Cancer Biol 23:522–532CrossRefGoogle Scholar
  15. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864CrossRefGoogle Scholar
  16. Cham KK, Baker JH, Takhar KS, Flexman JA, Wong MQ, Owen DA, Yung A, Kozlowski P, Reinsberg SA, Chu EM, Chang CW, Buczkowski AK, Chung SW, Scudamore CH, Minchinton AI, Yapp DT, Ng SS (2010) Metronomic gemcitabine suppresses tumour growth, improves perfusion, and reduces hypoxia in human pancreatic ductal adenocarcinoma. Br J Cancer 103:52–60CrossRefGoogle Scholar
  17. Chan TS, Hsu CC, Pai VC, Liao WY, Huang SS, Tan KT, Yen CJ, Hsu SC, Chen WY, Shan YS, Li CR, Lee MT, Jiang KY, Chu JM, Lien GS, Weaver VM, Tsai KK (2016) Metronomic chemotherapy prevents therapy-induced stromal activation and induction of tumor-initiating cells. J Exp Med 213:2967–2988CrossRefGoogle Scholar
  18. Choi CH, Ryu JY, Cho YJ, Jeon HK, Choi JJ, Ylaya K, Lee YY, Kim TJ, Chung JY, Hewitt SM, Kim BG, Bae DS, Lee JW (2017) The anti-cancer effects of itraconazole in epithelial ovarian cancer. Sci Rep 7:6552CrossRefGoogle Scholar
  19. Clements MK, Jones CB, Cumming M, Daoud SS (1999) Antiangiogenic potential of camptothecin and topotecan. Cancer Chemother Pharmacol 44:411–416CrossRefGoogle Scholar
  20. Colleoni M, Orlando L, Sanna G, Rocca A, Maisonneuve P, Peruzzotti G, Ghisini R, Sandri MT, Zorzino L, Nole F, Viale G, Goldhirsch A (2006) Metronomic low-dose oral cyclophosphamide and methotrexate plus or minus thalidomide in metastatic breast cancer: antitumor activity and biological effects. Ann Oncol 17:232–238CrossRefGoogle Scholar
  21. Czepluch FS, Waltenberger J (2008) Vascular endothelial growth factor protein levels and gene expression in peripheral monocytes after stenting: a randomized comparative study of sirolimus-eluting and bare-metal stents. Eur Heart J 29:1924–1925CrossRefGoogle Scholar
  22. Di Desidero T, Derosa L, Galli L, Orlandi P, Fontana A, Fioravanti A, Marconcini R, Giorgi M, Campi B, Saba A, Lucchesi S, Felipetto R, Danesi R, Francia G, Allegrini G, Falcone A, Bocci G (2016) Clinical, pharmacodynamic and pharmacokinetic results of a prospective phase II study on oral metronomic vinorelbine and dexamethasone in castration-resistant prostate cancer patients. Invest New Drugs 34:760–770CrossRefGoogle Scholar
  23. Ding Y, Shan L, Nai W, Lin X, Zhou L, Dong X, Wu H, Xiao M, Zhou X, Wang L, Li T, Fu Y, Lin Y, Jia C, Dai M, Bai X (2018) DEPTOR deficiency-mediated mTORc1 hyperactivation in vascular endothelial cells promotes angiogenesis. Cell Physiol Biochem 46:520–531CrossRefGoogle Scholar
  24. Dudley AC (2012) Tumor endothelial cells. Cold Spring Harb Perspect Med 2:a006536CrossRefGoogle Scholar
  25. Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K, Oliner JD, McKeon F, Haber DA (2002) REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell 10:995–1005CrossRefGoogle Scholar
  26. Emmenegger U, Man S, Shaked Y, Francia G, Wong JW, Hicklin DJ, Kerbel RS (2004) A comparative analysis of low-dose metronomic cyclophosphamide reveals absent or low-grade toxicity on tissues highly sensitive to the toxic effects of maximum tolerated dose regimens. Cancer Res 64:3994–4000CrossRefGoogle Scholar
  27. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286CrossRefGoogle Scholar
  28. Frost P, Berlanger E, Mysore V, Hoang B, Shi Y, Gera J, Lichtenstein A (2013) Mammalian target of rapamycin inhibitors induce tumor cell apoptosis in vivo primarily by inhibiting VEGF expression and angiogenesis. J Oncol 2013:897025CrossRefGoogle Scholar
  29. Fuchs D, Rodriguez A, Eriksson S, Christofferson R, Sundberg C, Azarbayjani F (2010) Metronomic administration of the drug GMX1777, a cellular NAD synthesis inhibitor, results in neuroblastoma regression and vessel maturation without inducing drug resistance. Int J Cancer 126:2773–2789Google Scholar
  30. Galluzzi L, Buqué A, Kepp O, Zitvogel L (2015) Kroemer G (2015) Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28:690–714CrossRefGoogle Scholar
  31. Gasparini G (2001) Metronomic scheduling: the future of chemotherapy? Lancet Oncol 2:733–740CrossRefGoogle Scholar
  32. Gnoni A, Silvestris N, Licchetta A, Santini D, Scartozzi M, Ria R, Pisconti S, Petrelli F, Vacca A, Lorusso V (2015) Metronomic chemotherapy from rationale to clinical studies: a dream or reality? Crit Rev Oncol Hematol 95:46–61CrossRefGoogle Scholar
  33. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, Jauch KW, Geissler EK (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8:128–135CrossRefGoogle Scholar
  34. Hamano Y, Sugimoto H, Soubasakos MA, Kieran M, Olsen BR, Lawler J, Sudhakar A, Kalluri R (2004) Thrombospondin-1 associated with tumor microenvironment contributes to low-dose cyclophosphamide-mediated endothelial cell apoptosis and tumor growth suppression. Cancer Res 64:1570–1574CrossRefGoogle Scholar
  35. Hanahan D, Bergers G, Bergsland E (2000) Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 105:1045–1047CrossRefGoogle Scholar
  36. Hida K, Akiyama K, Ohga N, Maishi N, Hida Y (2013a) Tumour endothelial cells acquire drug resistance in a tumour microenvironment. J Biochem 153:243–249CrossRefGoogle Scholar
  37. Hida K, Ohga N, Akiyama K, Maishi N, Hida Y (2013b) Heterogeneity of tumor endothelial cells. Cancer Sci 104:1391–1395CrossRefGoogle Scholar
  38. Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, Park YB (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24:288–293CrossRefGoogle Scholar
  39. Iliopoulos D, Hirsch HA, Wang G, Struhl K (2011) Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci USA 108:1397–1402CrossRefGoogle Scholar
  40. Jia L, Waxman DJ (2013) Thrombospondin-1 and pigment epithelium-derived factor enhance responsiveness of KM12 colon tumor to metronomic cyclophosphamide but have disparate effects on tumor metastasis. Canc Lett 330:241–249CrossRefGoogle Scholar
  41. Jones BS, Jerome MS, Miley D, Jackson BE, DeShazo MR, Reddy VV, Singh KP, Brown OC, Robert F (2017) Pilot phase II study of metronomic chemotherapy in combination with bevacizumab in patients with advanced non-squamous non-small cell lung cancer. Lung Cancer 106:125–130CrossRefGoogle Scholar
  42. Jung K, Heishi T, Incio J, Huang Y, Beech EY, Pinter M, Ho WW, Kawaguchi K, Rahbari NN, Chung E, Kim JK, Clark JW, Willett CG, Yun SH, Luster AD, Padera TP, Jain RK, Fukumura D (2017) Targeting CXCR4-dependent immunosuppressive Ly6Clow monocytes improves antiangiogenic therapy in colorectal cancer. Proc Natl Acad Sci USA 114:10455–10460CrossRefGoogle Scholar
  43. Kerbel RS (2007) Improving conventional or low dose metronomic chemotherapy with targeted antiangiogenic drugs. Cancer Res Treat 39:150–159CrossRefGoogle Scholar
  44. Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4:423–436CrossRefGoogle Scholar
  45. Kim K, Kim IK, Yang JM, Lee E, Koh BI, Song S, Park J, Lee S, Choi C, Kim JW, Kubota Y, Koh GY, Kim I (2016) SoxF transcription factors are positive feedback regulators of VEGF signaling. Circ Res 119:839–852CrossRefGoogle Scholar
  46. Kim IK, Kim K, Lee E, Oh DS, Park CS, Park S, Yang JM, Kim JH, Kim HS, Shima DT, Kim JH, Hong SH, Cho YH, Kim YH, Park JB, Koh GY, Ju YS, Lee HK, Lee S, Kim I (2018) Sox7 promotes high-grade glioma by increasing VEGFR2-mediated vascular abnormality. J Exp Med 215:963–983CrossRefGoogle Scholar
  47. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, Bohlen P, Kerbel RS (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105:R15–R24CrossRefGoogle Scholar
  48. Korkaya H, Liu S, Wicha MS (2011) Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 121:3804–3809CrossRefGoogle Scholar
  49. Kumar S, Mokhtari RB, Sheikh R, Wu B, Zhang L, Xu P, Man S, Oliveira ID, Yeger H, Kerbel RS, Baruchel S (2011) Metronomic oral topotecan with pazopanib is an active antiangiogenic regimen in mouse models of aggressive pediatric solid tumor. Clin Canc Res 17:5656–5667CrossRefGoogle Scholar
  50. Langenkamp E, Molema G (2009) Microvascular endothelial cell heterogeneity: general concepts and pharmacological consequences for anti-angiogenic therapy of cancer. Cell Tissue Res 335:205–222CrossRefGoogle Scholar
  51. Lee K, Qian DZ, Rey S, Wei H, Liu JO, Semenza GL (2009) Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor induced mobilization of circulating angiogenic cells. Proc Natl Acad Sci USA 106:2353–2358CrossRefGoogle Scholar
  52. Lee DC, Sohn HA, Park ZY, Oh S, Kang YK, Lee KM, Kang M, Jang YJ, Yang SJ, Hong YK, Noh H, Kim JA, Kim DJ, Bae KH, Kim DM, Chung SJ, Yoo HS, Yu DY, Park KC, Yeom YI (2015) A lactate-induced response to hypoxia. Cell 161:595–609CrossRefGoogle Scholar
  53. Lin Y, Weisdorf D, Solovey A, Hebbel RP (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105:71–77CrossRefGoogle Scholar
  54. Liu M, Kluger MS, D’Alessio A, Garcia-Cardena G, Pober JS (2008) Regulation of arterial-venous differences in tumor necrosis factor responsiveness of endothelial cells by anatomic context. Am J Pathol 172:1088–1099CrossRefGoogle Scholar
  55. Luan X, Guan YY, Lovell JF, Zhao M, Lu Q, Liu YR, Liu HJ, Gao YG, Dong X, Yang SC, Zheng L, Sun P, Fang C, Chen HZ (2016) Tumor priming using metronomic chemotherapy with neovasculature-targeted, nanoparticulate paclitaxel. Biomaterials 95:60–73CrossRefGoogle Scholar
  56. Mainetti LE, Rico MJ, Fernandez-Zenobi MV, Perroud HA, Roggero EA, Rozados VR, Scharovsky OG (2012) Therapeutic efficacy of metronomic chemotherapy with cyclophosphamide and doxorubicin on murine mammary adenocarcinomas. Ann Oncol 24:2310–2316CrossRefGoogle Scholar
  57. Maishi N, Ohba Y, Akiyama K, Ohga N, Hamada J, Nagao-Kitamoto H, Alam MT, Yamamoto K, Kawamoto T, Inoue N, Taketomi A, Shindoh M, Hida Y, Hida K (2016) Tumour endothelial cells in high metastatic tumours promote metastasis via epigenetic dysregulation of biglycan. Sci Rep 6:28039CrossRefGoogle Scholar
  58. Maiti R (2014) Metronomic chemotherapy. J Pharmacol Pharmacother 5:186–192CrossRefGoogle Scholar
  59. Matsuda K, Ohga N, Hida Y, Muraki C, Tsuchiya K, Kurosu T, Akino T, Shih SC, Totsuka Y, Klagsbrun M, Shindoh M, Hida K (2010a) Adrenomedullin antagonist suppresses tumor formation in renal cell carcinoma through inhibitory effects on tumor endothelial cells and endothelial progenitor mobilization. Int J Oncol 394:947–954Google Scholar
  60. Matsuda K, Ohga N, Hida Y, Muraki C, Tsuchiya K, Kurosu T, Akino T, Shih SC, Totsuka Y, Klagsbrun M, Shindoh M, Hida K (2010b) Isolated tumor endothelial cells maintain specific character during long-term culture. Biochem Biophys Res Commun 394:947–954CrossRefGoogle Scholar
  61. Matsuda K, Ohga N, Hida Y, Muraki C, Tsuchiya K, Kurosu T, Akino T, Shih SC, Totsuka Y, Klagsbrun M, Shindoh M, Hida K (2011) HuR keeps an angiogenic switch on by stabilising mRNA of VEGF and COX-2 in tumour endothelium. Br J Cancer 104:819–829CrossRefGoogle Scholar
  62. Merrick WC (2004) Cap-dependent and cap-independent translation in eukaryotic systems. Gene 332:1–11CrossRefGoogle Scholar
  63. Mpekris F, Baish JW, Stylianopoulos T, Jain RK (2017) Role of vascular normalization in benefit from metronomic chemotherapy. Proc Natl Acad Sci USA 114:1994–1999CrossRefGoogle Scholar
  64. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56CrossRefGoogle Scholar
  65. Murakami J, Li TS, Ueda K, Tanaka T, Hamano K (2009) Inhibition of accelerated tumor growth by blocking the recruitment of mobilized endothelial progenitor cells after chemotherapy. Int J Cancer 12:1685–1692CrossRefGoogle Scholar
  66. Murakami H, Ogata Y, Akagi Y, Ishibashi N, Shirouzu K (2011) Circulating endothelial progenitor cells in metronomic chemotherapy using irinotecan and/or bevacizumab for colon carcinoma: study of their clinical significance. Exp Ther Med 2:595–600CrossRefGoogle Scholar
  67. Natale G, Bocci G (2018) Does metronomic chemotherapy induce tumor angiogenic dormancy? A review of available preclinical and clinical data. Cancer Lett 432:28–37CrossRefGoogle Scholar
  68. Nissinen TA, Degerman J, Räsänen M, Poikonen AR, Koskinen S, Mervaala E, Pasternack A, Ritvos O, Kivelä R, Hulmi JJ (2016) Systemic blockade of ACVR2B ligands prevents chemotherapy-induced muscle wasting by restoring muscle protein synthesis without affecting oxidative capacity or atrogenes. Sci Rep 6:32695CrossRefGoogle Scholar
  69. Panigrahy D, Kaipainen A, Butterfield CE, Chaponis DM, Laforme AM, Folkman J, Kieran MW (2010) Inhibition of tumor angiogenesis by oral etoposide. Exp Ther Med 1:739–746CrossRefGoogle Scholar
  70. Pasquier E, Kavallaris M, Andre N (2010) Metronomic chemotherapy: new rationale for new directions. Nat Rev Clin Oncol 7:455–465CrossRefGoogle Scholar
  71. Rao N, Lee YF, Ge R (2015) Novel endogenous angiogenesis inhibitors and their therapeutic potential. Acta Pharmacol Sin 36:1177–1190CrossRefGoogle Scholar
  72. Räsänen M, Degerman J, Nissinen TA, Miinalainen I, Kerkelä R, Siltanen A, Backman JT, Mervaala E, Hulmi JJ, Kivelä R, Alitalo K (2016) VEGF-B gene therapy inhibits doxorubicin-induced cardiotoxicity by endothelial protection. Proc Natl Acad Sci USA 113:13144–13149CrossRefGoogle Scholar
  73. Rocha GZ, Dias MM, Ropelle ER, Osório-Costa F, Rossato FA, Vercesi AE, Saad MJ, Carvalheira JB (2011) Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res 17:3993–4005CrossRefGoogle Scholar
  74. Roviello G, Bachelot T, Hudis CA, Curigliano G, Reynolds AR, Petrioli R, Generali D (2017) The role of bevacizumab in solid tumours: a literature based meta-analysis of randomised trials. Eur J Cancer 75:245–258CrossRefGoogle Scholar
  75. Russell JS, Brown JM (2014) Circulating mouse Flk1 +/c-Kit +/CD45- cells function as endothelial progenitors cells (EPCs) and stimulate the growth of human tumor xenografts. Mol Cancer 13:177CrossRefGoogle Scholar
  76. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550CrossRefGoogle Scholar
  77. Sarkar A, Hochedlinger K (2013) The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12:15–39CrossRefGoogle Scholar
  78. Schmidt KM, Hellerbrand C, Ruemmele P, Michalski CW, Kong B, Kroemer A, Hackl C, Schlitt HJ, Geissler EK, Lang SA (2017) Inhibition of mTORC2 component RICTOR impairs tumor growth in pancreatic cancer models. Oncotarget 8:24491–24505Google Scholar
  79. Shi H, Jiang J, Ji J, Shi M, Cai Q, Chen X, Yu Y, Liu B, Zhu Z, Zhang J (2014) Anti-angiogenesis participates in antitumor effects of metronomic capecitabine on colon cancer. Canc Lett 349:128–135CrossRefGoogle Scholar
  80. Simkens LH, van Tinteren H, May A, ten Tije AJ, Creemers GJ, Loosveld OJ, de Jongh FE, Erdkamp FL, Erjavec Z, van der Torren AM, Tol J, Braun HJ, Nieboer P, van der Hoeven JJ, Haasjes JG, Jansen RL, Wals J, Cats A, Derleyn VA, Honkoop AH, Mol L, Punt CJ, Koopman M (2015) Maintenance treatment with capecitabine and bevacizumab in metastatic colorectal cancer (CAIRO3): a phase 3 randomised controlled trial of the Dutch Colorectal Cancer Group. Lancet 385:1843–1852CrossRefGoogle Scholar
  81. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202CrossRefGoogle Scholar
  82. Stoelting S, Trefzer T, Kisro J, Steinke A, Wagner T, Peters SO (2008) Low-dose oral metronomic chemotherapy prevents mobilization of endothelial progenitor cells into the blood of cancer patients. Vivo 22:831–836Google Scholar
  83. Trevisani G, Bagnardi V, Sangalli C, Montagna E, Dellapasqua S, Sporchia A, Iorfida M, Viale G, Barberis M, Veronesi P, Luini A, Intra M, Goldhirsch A, Colleoni M (2015) Phase II study with epirubicin, cisplatin, and infusional fluorouracil followed by weekly paclitaxel with metronomic cyclophosphamide as a preoperative treatment of triple-negative breast cancer. Clin Breast Cancer 15:259–265CrossRefGoogle Scholar
  84. Trevisani F, Brandi G, Garuti F, Barbera MA, Tortora R, Casadei Gardini A, Granito A, Tovoli F, De Lorenzo S, Inghilesi AL, Foschi FG, Bernardi M, Marra F, Sacco R, Di Costanzo GG (2018) Metronomic capecitabine as second-line treatment for hepatocellular carcinoma after sorafenib discontinuation. J Cancer Res Clin Oncol 144:403–414CrossRefGoogle Scholar
  85. Upreti M, Jyoti A, Sethi P (2013) Tumor microenvironment and nanotherapeutics. Transl Cancer Res 2:309–319Google Scholar
  86. Vacca A, Iurlaro M, Ribatti D, Minischetti M, Nico B, Ria R, Pellegrino A, Dammacco F (1999) Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood 94:4143–4155Google Scholar
  87. Vadysirisack DD, Baenke F, Ory B, Lei K, Ellisen LW (2011) Feedback control of p53 translation by REDD1 and mTORC1 limits the p53-dependent DNA damage response. Mol Cell Biol 31:4356–4365CrossRefGoogle Scholar
  88. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768CrossRefGoogle Scholar
  89. Wang S, Lu J, You Q, Huang H, Chen Y, Liu K (2016) The mTOR/AP-1/VEGF signaling pathway regulates vascular endothelial cell growth. Oncotarget 7:53269–53276Google Scholar
  90. Wei J, Jiang H, Gao H, Wang G (2016) Blocking mammalian target of rapamycin (mTOR) attenuates HIF-1α pathways engaged-vascular endothelial growth factor (VEGF) in diabetic retinopathy. Cell Physiol Biochem 40:1570–1577CrossRefGoogle Scholar
  91. Woo IS, Jung YH (2017) Metronomic chemotherapy in metastatic colorectal cancer. Cancer Lett 400:319–324CrossRefGoogle Scholar
  92. Yu JX, Huang XF, Lv WM, Ye CS, Peng XZ, Zhang H, Xiao LB, Wang SM (2009) Combination of stromal-derived factor-1α and vascular endothelial growth factor gene-modified endothelial progenitor cells is more effective for ischemic neovascularization. J Vasc Surg 50:608–616CrossRefGoogle Scholar
  93. Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci USA 93:14765–14770CrossRefGoogle Scholar
  94. Yuan F, Shi H, Ji J, Cai Q, Chen X, Yu Y, Liu B, Zhu Z, Zhang J (2015) Capecitabine metronomic chemotherapy inhibits the proliferation of gastric cancer cells through anti-angiogenesis. Oncol Rep 33:1753–1762CrossRefGoogle Scholar
  95. Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology and Pain MedicineHanyang University HospitalSeoulSouth Korea
  2. 2.Department of Molecular and Cellular Biochemistry School of MedicineKangwon National University School of MedicineChuncheonSouth Korea

Personalised recommendations