Advertisement

BIOspektrum

, Volume 24, Issue 6, pp 590–592 | Cite as

TGFβ in der Entwicklung und Metastasierung von Karzinomen

  • Andre Menke
  • Klaudia Giehl
Wissenschaft Zellmigration
  • 10 Downloads

Abstract

Depending on conditions and tumor stage, the transforming growth factor β (TGFβ) can act either as tumor suppressor or as tumor promoter. One process by which TGFβ contributes to metastatic events is the epithelial to mesenchymal transition (EMT). This process results in de - differentiation of tumor cells, gain of migratory capability and increase of tumor cell survival in particular of detached tumor cells. In the last years multiple mechanisms have been described by which TGFβ mediates EMT in a variety of tumor entities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Thiery JP, Acloque H, Huang RYJ et al. (2009) EMTs in development and disease. Cell 139:871–890CrossRefPubMedPubMedCentralGoogle Scholar
  2. [2]
    Zhang YE (2018) Mechanistic insight into contextual TGF-ß signaling. Curr Opin Cell Biol 51:1–7CrossRefPubMedGoogle Scholar
  3. [3]
    Suzuki H (2018) MicroRNA control of TGF-ß signaling. Int J Mol Sci 19:1901–1910CrossRefPubMedCentralGoogle Scholar
  4. [4]
    Heldin CH, Moustakas A (2016) Signaling receptors for TGF-ß family members. Cold Spring Harb Perspect Biol 8, doi: 10.1101/cshperspect.a022053Google Scholar
  5. [5]
    Hill CS (2016) Transcriptional control by the SMADs. Cold Spring Harb Perspect Biol 8, doi: 10.1101/cshperspect.a022079Google Scholar
  6. [6]
    Imamichi Y, Waidmann O, Giehl K et al. (2005) TGF betainduced focal complex formation in epithelial cells is mediated by activated ERK and JNK MAP kinases and is independent of Smad4. Biol Chem 386:225–236CrossRefPubMedGoogle Scholar
  7. [7]
    Giehl K, Imamichi K, Menke A (2007) Smad4-independent TGF-beta signaling in tumor cell migration. Cells Tissues Organs 185:123–130CrossRefPubMedGoogle Scholar
  8. [8]
    Shirakihara T, Saitoh M, Miyazono K et al. (2007) Differential regulation of epithelial and mesenchymal markers by dEF1 proteins in epithelial–mesenchymal transition induced by TGF-ß. Mol Biol Cell 18:3533–3544CrossRefPubMedPubMedCentralGoogle Scholar
  9. [9]
    Mu Y, Gudey SK, Landström M (2012) Non-Smad signaling pathways. Cell Tissue Res 347:11–20CrossRefPubMedGoogle Scholar
  10. [10]
    Witte D, Otterbein H, Giehl K et al. (2017) Negative regulation of TGF-ß1-induced MKK6-p38 and MEK-ERK signalling and epithelial-mesenchymal transition by Rac1b. Sci Rep 7:17313–17318CrossRefPubMedPubMedCentralGoogle Scholar
  11. [11]
    Nuessle JM, Giehl K, Menke et al. (2011) TGFbeta1 suppresses vascular smooth muscle cell motility by expression of N-cadherin. Biol Chem 392:461–474CrossRefPubMedGoogle Scholar
  12. [12]
    Ungefroren H, Sebens S, Giehl K et al. (2014) Rac1b negatively regulates TGF-ß1-induced cell motility in pancreatic ductal epithelial cells by suppressing Smad signaling. Oncotarget 5:277–290CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Molekulare Onkologie Solider Tumore, Klinik für Innere MedizinUniversität GießenGießenDeutschland
  2. 2.Signaltransduktion Zellulärer Motilität, Klinik für Innere MedizinUniversität GießenGießenDeutschland

Personalised recommendations