Advertisement

Profound Increase of Lung Airway Resistance in Heart Failure: a Potential Important Contributor for Dyspnea

  • Xiaohong Liu
  • Liuqing Yang
  • Dongmin Kwak
  • Lei Hou
  • Ruru Shang
  • Carolyn Meyer
  • Angela Panoskaltsis-Mortari
  • Xin Xu
  • Edward Kenneth Weir
  • Yingjie ChenEmail author
Original Article

Abstract

Dyspnea is a major symptom of heart failure (HF). Here, we have studied the lung remodeling and airway resistance in HF mice. We demonstrated that aortic banding–induced HF caused a dramatic decrease of lung compliance and an increase of lung airway resistance. The decrease of lung compliance was correlated with the increased lung weight in a linear fashion (γ2 = 0.824). An HF-induced increase of lung airway resistance and a decrease of lung compliance were almost identical in anesthetized mice and in the isolated lungs from these mice. HF caused profound lung fibrosis in mice with increased lung weight. Moreover, HF patients of NYHA class III–IV showed increased lung density as revealed by high-resolution CT scanning. These data indicate that lung compliance and lung airway resistance may be useful in determining lung remodeling after HF, and lung structure changes may contribute to dyspnea in HF.

Keywords

Heart failure Lung fibrosis Lung compliance Pulmonary hypertension 

Notes

Funding

This study was supported by Grants R01HL105406 and HL139797-01A1 from the National Institutes of Health.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12265_2019_9864_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1084 kb)

References

  1. 1.
    Yancy, C. W., et al. (2013). American College of Cardiology Foundation; American Heart Association Task Force on Practice Guidelines. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology, 62, e147–e239.  https://doi.org/10.1016/j.jacc.2013.05.019. CrossRefPubMedGoogle Scholar
  2. 2.
    Chen, Y., Guo, H., Xu, D., Xu, X., Wang, H., Hu, X., Lu, Z., Kwak, D., Xu, Y., Gunther, R., Huo, Y., & Weir, E. K. (2012). Left ventricular failure produces profound lung remodeling and pulmonary hypertension in mice: heart failure causes severe lung disease. Hypertension, 59(6), 1170–1178.CrossRefGoogle Scholar
  3. 3.
    Wang, H., Hou, L., Kwak, D., Fassett, J., Xu, X., Chen, A., Chen, W., Blazar, B. R., Xu, Y., Hall, J. L., Ge, J., Bache, R. J., & Chen, Y. (2016). Increasing regulatory T cells with interleukin-2 and interleukin-2 antibody complexes attenuates lung inflammation and heart failure progression. Hypertension, 68(1), 114–122.CrossRefGoogle Scholar
  4. 4.
    Bursi, F., McNallan, S. M., Redfield, M. M., Nkomo, V. T., Lam, C. S., Weston, S. A., Jiang, R., & Roger, V. L. (2012). Pulmonary pressures and death in heart failure: a community study. Journal of the American College of Cardiology, 59(3), 222–231.CrossRefGoogle Scholar
  5. 5.
    Simonneau, G., Robbins, I. M., Beghetti, M., Channick, R. N., Delcroix, M., Denton, C. P., Elliott, C. G., Gaine, S. P., Gladwin, M. T., Jing, Z., Krowka, M. J., Langleben, D., Nakanishi, N., & Souza, R. (2009). Updated clinical classification of pulmonary hypertension. Journal of the American College of Cardiology, 54(1), S43–S54.CrossRefGoogle Scholar
  6. 6.
    Galie, N., et al. (2009). Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). European Heart Journal, 30(20), 2493–2537.CrossRefGoogle Scholar
  7. 7.
    Hoeper, M. M., Barbera, J. A., Channick, R. N., Hassoun, P. M., Lang, I. M., Manes, A., Martinez, F. J., Naeije, R., Olschewski, H., Pepke-Zaba, J., Redfield, M. M., Robbins, I. M., Souza, R., Torbicki, A., & McGoon, M. (2009). Diagnosis, assessment, and treatment of non-pulmonary arterial hypertension pulmonary hypertension. Journal of the American College of Cardiology, 54(1), S85–S96.CrossRefGoogle Scholar
  8. 8.
    Wang, H., Xu, X., Fassett, J., Kwak, D., Liu, X., Hu, X., Falls, T. J., Bell, J. C., Li, H., Bitterman, P., Bache, R. J., & Chen, Y. (2014). Double-stranded RNA-dependent protein kinase deficiency protects the heart from systolic overload-induced congestive heart failure. Circulation, 129(13), 1397–1406.CrossRefGoogle Scholar
  9. 9.
    Lu, Z., Xu, X., Hu, X., Lee, S., Traverse, J. H., Zhu, G., Fassett, J., Tao, Y., Zhang, P., dos Remedios, C., Pritzker, M., Hall, J. L., Garry, D. J., & Chen, Y. (2010). Oxidative stress regulates left ventricular PDE5 expression in the failing heart. Circulation, 121(13), 1474–1483.CrossRefGoogle Scholar
  10. 10.
    Panoskaltsis-Mortari, A., Tram, K. V., Price, A. P., Wendt, C. H., & Blazar, B. R. (2007). A new murine model for bronchiolitis obliterans post-bone marrow transplant. American Journal of Respiratory and Critical Care Medicine, 176(13), 713–723.CrossRefGoogle Scholar
  11. 11.
    Cournand, A., Bloomfield, R. A., & Lauson, H. D. (1945). Double lumen catheter for intravenous and intracardiac blood sampling and pressure recording. Proceedings of the Society for Experimental Biology and Medicine, 60, 73–75.CrossRefGoogle Scholar
  12. 12.
    Ghio, S., Gavazzi, A., Campana, C., Inserra, C., Klersy, C., Sebastiani, R., Arbustini, E., Recusani, F., & Tavazzi, L. (2001). Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. Journal of the American College of Cardiology, 37(1), 183–188.CrossRefGoogle Scholar
  13. 13.
    Wagenvoort, C. A. (1985). Open lung biopsies in congenital heart disease for evaluation of pulmonary vascular disease. Predictive value with regard to corrective operability. Histopathology, 9(4), 417–436.CrossRefGoogle Scholar
  14. 14.
    Kato, S., Nakamoto, T., & Iizuka, M. (1996). Early diagnosis and estimation of pulmonary congestion and edema in patients with left-sided heart diseases from histogram of pulmonary CT number. Chest, 109(6), 1439–1445.CrossRefGoogle Scholar
  15. 15.
    Liu, X., Hou, L., Xu, D., Chen, A., Yang, L., Zhuang, Y., Xu, Y., Fassett, J. T., & Chen, Y. (2016). Effect of asymmetric dimethylarginine (ADMA) on heart failure development. Nitric Oxide, 54, 73–81.CrossRefGoogle Scholar
  16. 16.
    Wang, H., Kwak, D., Fassett, J., Hou, L., Xu, X., Burbach, B. J., Thenappan, T., Xu, Y., Ge. J, Shimizu, Y., Bache, R. J.,&Chen, Y. (2016). CD28/B7 deficiency attenuates systolic overload-induced congestive heart failure, myocardial and pulmonary inflammation, and activated T cell accumulation in the heart and lungs. Hypertension, 68(3), 688–696Google Scholar
  17. 17.
    Kallikourdis, M., Martini, E., Carullo, P., Sardi, C., Roselli, G., Greco, C. M., Vignali, D., Riva, F., Ormbostad Berre, A.M., Stolen, T. O., Fumero, A., Faggian, G., Pasquale, E. P., Elia, L., Rumio, C., Catalucci, D., Papait, R.,&Condorelli, G. (2017) . T cell costimulation blockade blunts pressure overload-induced heart failure. Nat Commun, 8, 14680.Google Scholar
  18. 18.
    Wang, H., Kwak, D., Fassett, J., Liu, X., Yao, W., Weng, X., Xu, X., Xu, Y., Bache, R. J., Mueller, D. L., & Chen, Y. (2017). Role of bone marrow-derived CD11c+ dendritic cells in systolic overload-induced left ventricular inflammation, fibrosis and hypertrophy. Basic Research in Cardiology, 112(3), 25.CrossRefGoogle Scholar
  19. 19.
    Dos Santos, G., Rogel, M. R., Baker, M. A., Troken, J. R., Urich, D., Morales-Nebreda, L., Sennello, J. A., Kutuzov, M. A., Sitikov, A., Davis, J. M., Lam, A. P., Cheresh, P., Kamp, D., Shumaker, D. K., Budinger, G. R., & Ridge, K. M. (2015). Vimentin regulates activation of the NLRP3 inflammasome. Nature Communications, 6, 6574.CrossRefGoogle Scholar
  20. 20.
    van Nierop, B.J., van Assen, H.C., van Deel, E.D., Niesen, L.B., Duncker, D.J., Strijkers, G.J., Nicolay, K. (2013), Phenotyping of left and right ventricular function in mouse models of compensated hypertrophy and heart failure with cardiac MRI. PLoS One 8(2):e55424.Google Scholar
  21. 21.
    Sun, H., Olson, K. C., Gao, C., Prosdocimo, D. A., Zhou, M., Wang, Z., Jeyaraj, D., Youn, J. Y., Ren, S., Liu, Y., Rau, C. D., Shah, S., Ilkayeva, O., Gui, W. J., William, N. S., Wynn, R. M., Newgard, C. B., Cai, H., Xiao, X., Chuang, D. T., Schulze, P. C., Lynch, C., Jain, M. K., & Wang, Y. (2016). Catabolic defect of branched-chain amino acids promotes heart failure. Circulation, 133(21), 2038–2049.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiaohong Liu
    • 1
  • Liuqing Yang
    • 2
    • 3
  • Dongmin Kwak
    • 2
    • 3
  • Lei Hou
    • 2
    • 3
  • Ruru Shang
    • 1
  • Carolyn Meyer
    • 3
  • Angela Panoskaltsis-Mortari
    • 2
    • 3
  • Xin Xu
    • 4
  • Edward Kenneth Weir
    • 3
  • Yingjie Chen
    • 2
    • 3
    Email author
  1. 1.Shanxi Provincial People’s HospitalTaiyuanChina
  2. 2.Cardiovascular Division and Lillehei Heart InstituteUniversity of Minnesota Medical SchoolMinneapolisUSA
  3. 3.Department of MedicineUniversity of MinnesotaMinneapolisUSA
  4. 4.Department of Exercise RehabilitationShanghai University of SportShanghaiChina

Personalised recommendations