Advertisement

Electrophysiology Translational Considerations in Cardio-Oncology: QT and Beyond

  • Mohammed Alomar
  • Michael G. FradleyEmail author
Review
Part of the following topical collections:
  1. Special Issue: Cardiovascular Function and Cancer Treatment

Abstract

With improved screening and the advent of many novel therapeutics, patients with cancer are living longer and often surviving their disease. Cardiovascular complications have significant impact on both short- and long-term morbidity and mortality in these patients. While a great deal of attention has been paid to cardiomyopathy and heart failure, many other cardiotoxicities can occur, often at higher rates. Arrhythmias are a particularly common cardiovascular complication of cancer therapeutics and can range from benign to life threatening. Moreover, management of these rhythm disturbances can be challenging in cancer patients for various reasons including drug interactions, as well as underlying hematologic and metabolic disturbances. In this review, we describe the most common therapeutics associated with arrhythmias in cancer patients and provide a discussion about the potential basic and translational mechanisms leading to the development of the various rhythm disturbances which may help to guide prevention and treatment decisions. Clinicaltrials.gov Identifier: NCT02928497

Keywords

Cardio-oncology Arrhythmias Atrial fibrillation QT prolongation Cardiotoxicity 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dr. Fradley has served as a consultant/advisor for Novartis.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    WHO. World health statistics 2018: monitoring health for the SDGs, sustainable development goals. World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. 2018Google Scholar
  2. 2.
    Society, A. C. (2014). Cancer treatment and survivorship facts & figures 2014–2015 (p. 2014). Atlanta: American Cancer Society.Google Scholar
  3. 3.
    Akhtar, S. S., Salim, K. P., & Bano, Z. A. (1993). Symptomatic cardiotoxicity with high-dose 5-fluorouracil infusion: a prospective study. Oncology., 50(6), 441–444.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Sulpher, J., Dattilo, F., Dent, S., Turek, M., Reaume, M. N., & Johnson, C. (2014). Acute cardiogenic shock induced by infusional 5-fluorouracil. Case Rep Oncol Med, 2014, 819396.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Tamargo, J., Caballero, R., & Delpon, E. (2015). Cancer chemotherapy and cardiac arrhythmias: a review. Drug Saf, 38(2), 129–152.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Fatema, K., Gertz, M. A., Barnes, M. E., et al. (2009). Acute weight gain and diastolic dysfunction as a potent risk complex for post stem cell transplant atrial fibrillation. Am J Hematol, 84(8), 499–503.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Feliz, V., Saiyad, S., Ramarao, S. M., Khan, H., Leonelli, F., & Guglin, M. (2011). Melphalan-induced supraventricular tachycardia: incidence and risk factors. Clin Cardiol, 34(6), 356–359.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Hidalgo, J. D., Krone, R., Rich, M. W., et al. (2004). Supraventricular tachyarrhythmias after hematopoietic stem cell transplantation: incidence, risk factors and outcomes. Bone Marrow Transplant, 34(7), 615–619.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Muchtar, E., Dingli, D., Kumar, S., et al. (2016). Autologous stem cell transplant for multiple myeloma patients 70 years or older. Bone Marrow Transplant, 51(11), 1449–1455.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Peres, E., Levine, J. E., Khaled, Y. A., et al. (2010). Cardiac complications in patients undergoing a reduced-intensity conditioning hematopoietic stem cell transplantation. Bone Marrow Transplant, 45(1), 149–152.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Singla, A., Hogan, W. J., Ansell, S. M., et al. (2013). Incidence of supraventricular arrhythmias during autologous peripheral blood stem cell transplantation. Biol Blood Marrow Transplant, 19(8), 1233–1237.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Buza, V., Rajagopalan, B., & Curtis, A. B. (2017). Cancer treatment-induced arrhythmias: focus on chemotherapy and targeted therapies. Circ Arrhythm Electrophysiol, 10(8), e005443.  https://doi.org/10.1161/CIRCEP.117.005443.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Raja, W., Mir, M. H., Dar, I., Banday, M. A., & Ahmad, I. (2013). Cisplatin induced paroxysmal supraventricular tachycardia. Indian J Med Paediatr Oncol, 34(4), 330–332.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Yang, X., Li, X., Yuan, M., et al. (2018). Anticancer therapy-induced atrial fibrillation: electrophysiology and related mechanisms. Front Pharmacol, 9, 1058.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Zellos, L., Richards, W. G., Capalbo, L., et al. (2009). A phase I study of extrapleural pneumonectomy and intracavitary intraoperative hyperthermic cisplatin with amifostine cytoprotection for malignant pleural mesothelioma. J Thorac Cardiovasc Surg, 137(2), 453–458.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kluza, J., Marchetti, P., Gallego, M. A., et al. (2004). Mitochondrial proliferation during apoptosis induced by anticancer agents: effects of doxorubicin and mitoxantrone on cancer and cardiac cells. Oncogene., 23(42), 7018–7030.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Wessler, J. D., Grip, L. T., Mendell, J., & Giugliano, R. P. (2013). The P-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol, 61(25), 2495–2502.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Zukkoor S, Thohan V. Drug-drug interactions of common cardiac medications and chemotherapeutic agents. 2018; https://www.acc.org/latest-in-cardiology/articles/2018/12/21/09/52/drug-drug-interactions-of-common-cardiac-medications-and-chemotherapeutic-agents. Accessed 30 Oct 2019
  19. 19.
    Siegel, D., Martin, T., Nooka, A., et al. (2013). Integrated safety profile of single-agent carfilzomib: experience from 526 patients enrolled in 4 phase II clinical studies. Haematologica., 98(11), 1753–1761.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    White Jr., R. L., Schwartzentruber, D. J., Guleria, A., et al. (1994). Cardiopulmonary toxicity of treatment with high dose interleukin-2 in 199 consecutive patients with metastatic melanoma or renal cell carcinoma. Cancer., 74(12), 3212–3222.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Guo, Y., Lip, G. Y., & Apostolakis, S. (2012). Inflammation in atrial fibrillation. J Am Coll Cardiol, 60(22), 2263–2270.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Heinzerling, L., Ott, P. A., Hodi, F. S., et al. (2016). Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J Immunother Cancer, 4, 50.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Yuan, M., Tse, G., Zhang, Z., et al. (2018). The incidence of atrial fibrillation with trastuzumab treatment: A systematic review and meta-analysis. Cardiovasc Ther, 36(6), e12475.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    McMullen, J. R., Boey, E. J., Ooi, J. Y., Seymour, J. F., Keating, M. J., & Tam, C. S. (2014). Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling. Blood., 124(25), 3829–3830.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Jiang, L., Li, L., Ruan, Y., et al. (2019). Ibrutinib promotes atrial fibrillation by inducing structural remodeling and calcium dysregulation in the atrium. Heart Rhythm, 16(9), 1374–1382.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Tuomi, J. M., Xenocostas, A., & Jones, D. L. (2018). Increased susceptibility for atrial and ventricular cardiac arrhythmias in mice treated with a single high dose of ibrutinib. Can J Cardiol, 34(3), 337–341.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Ganatra, S., Sharma, A., Shah, S., et al. (2018). Ibrutinib-associated atrial fibrillation. JACC Clin Electrophysiol, 4(12), 1491–1500.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Petrini, I., Lencioni, M., Ricasoli, M., et al. (2012). Phase II trial of sorafenib in combination with 5-fluorouracil infusion in advanced hepatocellular carcinoma. Cancer Chemother Pharmacol, 69(3), 773–780.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Farmakis, D., Parissis, J., & Filippatos, G. (2014). Insights into onco-cardiology: atrial fibrillation in cancer. J Am Coll Cardiol, 63(10), 945–953.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Iwasaki, Y. K., Nishida, K., Kato, T., & Nattel, S. (2011). Atrial fibrillation pathophysiology: implications for management. Circulation., 124(20), 2264–2274.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Imperatori, A., Mariscalco, G., Riganti, G., Rotolo, N., Conti, V., & Dominioni, L. (2012). Atrial fibrillation after pulmonary lobectomy for lung cancer affects long-term survival in a prospective single-center study. J Cardiothorac Surg, 7, 4.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kavurmaci, O., Akcam, T. I., Ergonul, A. G., Turhan, K., Cakan, A., & Cagirici, U. (2018). Is the risk of postoperative atrial fibrillation predictable in patients undergoing surgery due to primary lung cancer? Heart Lung Circ, 27(7), 835–841.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Nattel, S., Burstein, B., & Dobrev, D. (2008). Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol, 1(1), 62–73.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Hu, Y. F., Chen, Y. J., Lin, Y. J., & Chen, S. A. (2015). Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol, 12(4), 230–243.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Mazur, M., Wang, F., Hodge, D. O., et al. (2017). Burden of cardiac arrhythmias in patients with anthracycline-related cardiomyopathy. JACC Clin Electrophysiol, 3(2), 139–150.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Longhi, S., Quarta, C. C., Milandri, A., et al. (2015). Atrial fibrillation in amyloidotic cardiomyopathy: prevalence, incidence, risk factors and prognostic role. Amyloid., 22(3), 147–155.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Chandrasekhar, S., & Fradley, M. G. (2019). QT interval prolongation associated with cytotoxic and targeted cancer therapeutics. Curr Treat Options in Oncol, 20(7), 55.  https://doi.org/10.1007/s11864-019-0657-y.CrossRefGoogle Scholar
  38. 38.
    Fradley, M. G., Gliksman, M., Emole, J., et al. (2019). Rates and risk of atrial arrhythmias in patients treated with ibrutinib compared with cytotoxic chemotherapy. Am J Cardiol, 124(4), 539–544.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Passalia, C., Minetto, P., Arboscello, E., et al. (2013). Cardiovascular adverse events complicating the administration of rituximab: report of two cases. Tumori, 99(6), 288e–292e.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Dimopoulos, M. A., Tedeschi, A., Trotman, J., et al. (2018). Phase 3 trial of ibrutinib plus rituximab in Waldenstrom’s macroglobulinemia. N Engl J Med, 378(25), 2399–2410.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Romond, E. H., Perez, E. A., Bryant, J., et al. (2005). Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med, 353(16), 1673–1684.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Slamon, D. J., Leyland-Jones, B., Shak, S., et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med, 344(11), 783–792.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ozcelik, C., Erdmann, B., Pilz, B., et al. (2002). Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc Natl Acad Sci U S A, 99(13), 8880–8885.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Byrd, J. C., Brown, J. R., O’Brien, S., et al. (2014). Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med, 371(3), 213–223.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Dreyling, M., Jurczak, W., Jerkeman, M., et al. (2016). Ibrutinib versus temsirolimus in patients with relapsed or refractory mantle-cell lymphoma: an international, randomised, open-label, phase 3 study. Lancet., 387(10020), 770–778.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Miklos, D., Cutler, C. S., Arora, M., et al. (2017). Ibrutinib for chronic graft-versus-host disease after failure of prior therapy. Blood., 130(21), 2243–2250.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Treon, S. P., Tripsas, C. K., Meid, K., et al. (2015). Ibrutinib in previously treated Waldenstrom’s macroglobulinemia. N Engl J Med, 372(15), 1430–1440.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    O’Brien, S., Furman, R. R., Coutre, S., et al. (2018). Single-agent ibrutinib in treatment-naive and relapsed/refractory chronic lymphocytic leukemia: a 5-year experience. Blood., 131(17), 1910–1919.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Brown, J. R., Moslehi, J., O’Brien, S., et al. (2017). Characterization of atrial fibrillation adverse events reported in ibrutinib randomized controlled registration trials. Haematologica., 102(10), 1796–1805.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Shanafelt, T. D., Parikh, S. A., Noseworthy, P. A., et al. (2017). Atrial fibrillation in patients with chronic lymphocytic leukemia (CLL). Leuk Lymphoma, 58(7), 1630–1639.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Byrd, J. C., Harrington, B., O’Brien, S., et al. (2016). Acalabrutinib (ACP-196) in Relapsed Chronic Lymphocytic Leukemia. N Engl J Med, 374(4), 323–332.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Honigberg, L. A., Smith, A. M., Sirisawad, M., et al. (2010). The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A, 107(29), 13075–13080.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Figueroa, R., Alfonso, A., Lopez-Picazo, J., et al. (2018). Insights into venous thromboembolism prevention in hospitalized cancer patients: lessons from a prospective study. PLoS One, 13(8), e0200220.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Coppens, M., Eikelboom, J. W., Hart, R. G., et al. (2013). The CHA2DS2-VASc score identifies those patients with atrial fibrillation and a CHADS2 score of 1 who are unlikely to benefit from oral anticoagulant therapy. Eur Heart J, 34(3), 170–176.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Patell, R., Gutierrez, A., Rybicki, L., & Khorana, A. A. (2017). Usefulness of CHADS2 and CHA2DS2-VASc scores for stroke prediction in patients with cancer and atrial fibrillation. Am J Cardiol, 120(12), 2182–2186.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    D’Souza, M., Carlson, N., Fosbol, E., et al. (2018). CHA2DS2-VASc score and risk of thromboembolism and bleeding in patients with atrial fibrillation and recent cancer. Eur J Prev Cardiol, 25(6), 651–658.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Rhea, I. B., Lyon, A. R., & Fradley, M. G. (2019). Anticoagulation of cardiovascular conditions in the cancer patient: review of old and new therapies. Curr Oncol Rep, 21(5), 45.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Connolly, S. J., Ezekowitz, M. D., Yusuf, S., et al. (2009). Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med, 361(12), 1139–1151.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Granger, C. B., Alexander, J. H., McMurray, J. J., et al. (2011). Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med, 365(11), 981–992.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Patel, M. R., Mahaffey, K. W., Garg, J., et al. (2011). Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med, 365(10), 883–891.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Shah, S., Norby, F. L., Datta, Y. H., et al. (2018). Comparative effectiveness of direct oral anticoagulants and warfarin in patients with cancer and atrial fibrillation. Blood Adv, 2(3), 200–209.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kamel, S., Horton, L., Ysebaert, L., et al. (2015). Ibrutinib inhibits collagen-mediated but not ADP-mediated platelet aggregation. Leukemia., 29(4), 783–787.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Levade, M., David, E., Garcia, C., et al. (2014). Ibrutinib treatment affects collagen and von Willebrand factor-dependent platelet functions. Blood., 124(26), 3991–3995.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Wang, M. L., Rule, S., Martin, P., et al. (2013). Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med, 369(6), 507–516.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Lopez-Fernandez, T., Martin-Garcia, A., Roldan Rabadan, I., et al. (2019). Atrial fibrillation in active cancer patients: expert position paper and recommendations. Rev Esp Cardiol (Engl Ed), 72(9), 749–759.CrossRefGoogle Scholar
  66. 66.
    Masoudi, F. A., Calkins, H., Kavinsky, C. J., et al. (2015). 2015 ACC/HRS/SCAI left atrial appendage occlusion device societal overview. J Am Coll Cardiol, 66(13), 1497–1513.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Holmes Jr., D. R., Kar, S., Price, M. J., et al. (2014). Prospective randomized evaluation of the Watchman Left Atrial Appendage Closure device in patients with atrial fibrillation versus long-term warfarin therapy: the PREVAIL trial. J Am Coll Cardiol, 64(1), 1–12.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    January, C. T., Wann, L. S., Calkins, H., et al. (2019). 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol, 74(1), 104–132.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Ibrutinib. Aust Prescr. 2015;38(5):178-180.Google Scholar
  70. 70.
    Fradley, M. G., & Moslehi, J. (2015). QT prolongation and oncology drug development. Card Electrophysiol Clin, 7(2), 341–355.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Tse, G., Chan, Y. W., Keung, W., & Yan, B. P. (2017). Electrophysiological mechanisms of long and short QT syndromes. Int J Cardiol Heart Vasc, 14, 8–13.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Roden, D. M. (2004). Drug-induced prolongation of the QT interval. N Engl J Med, 350(10), 1013–1022.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Drew, B. J., Ackerman, M. J., Funk, M., et al. (2010). Prevention of torsade de pointes in hospital settings: a scientific statement from the American Heart Association and the American College of Cardiology Foundation. J Am Coll Cardiol, 55(9), 934–947.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Zamorano, J. L., Lancellotti, P., Munoz, D. R., et al. (2016). 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Kardiol Pol, 74(11), 1193–1233.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Chen, B., Peng, X., Pentassuglia, L., Lim, C. C., & Sawyer, D. B. (2007). Molecular and cellular mechanisms of anthracycline cardiotoxicity. Cardiovasc Toxicol, 7(2), 114–121.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Thomas, D., Karle, C. A., & Kiehn, J. (2006). The cardiac hERG/IKr potassium channel as pharmacological target: structure, function, regulation, and clinical applications. Curr Pharm Des, 12(18), 2271–2283.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Keating, M. T., & Sanguinetti, M. C. (2001). Molecular and cellular mechanisms of cardiac arrhythmias. Cell., 104(4), 569–580.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Lu, Z., Wu, C. Y., Jiang, Y. P., et al. (2012). Suppression of phosphoinositide 3-kinase signaling and alteration of multiple ion currents in drug-induced long QT syndrome. Sci Transl Med, 4(131), 131ra150.CrossRefGoogle Scholar
  79. 79.
    Ficker, E., Kuryshev, Y. A., Dennis, A. T., et al. (2004). Mechanisms of arsenic-induced prolongation of cardiac repolarization. Mol Pharmacol, 66(1), 33–44.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Barbey, J. T., Pezzullo, J. C., & Soignet, S. L. (2003). Effect of arsenic trioxide on QT interval in patients with advanced malignancies. J Clin Oncol, 21(19), 3609–3615.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Roboz, G. J., Ritchie, E. K., Carlin, R. F., et al. (2014). Prevalence, management, and clinical consequences of QT interval prolongation during treatment with arsenic trioxide. J Clin Oncol, 32(33), 3723–3728.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Mumford, J. L., Wu, K., Xia, Y., et al. (2007). Chronic arsenic exposure and cardiac repolarization abnormalities with QT interval prolongation in a population-based study. Environ Health Perspect, 115(5), 690–694.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Siu, C. W., Au, W. Y., Yung, C., et al. (2006). Effects of oral arsenic trioxide therapy on QT intervals in patients with acute promyelocytic leukemia: implications for long-term cardiac safety. Blood., 108(1), 103–106.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Sun, H., Oudit, G. Y., Ramirez, R. J., Costantini, D., & Backx, P. H. (2004). The phosphoinositide 3-kinase inhibitor LY294002 enhances cardiac myocyte contractility via a direct inhibition of Ik,slow currents. Cardiovasc Res, 62(3), 509–520.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Morgan Jr., T. K., & Sullivan, M. E. (1992). An overview of class III electrophysiological agents: a new generation of antiarrhythmic therapy. Prog Med Chem, 29, 65–108.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Porta-Sanchez, A., Gilbert, C., Spears, D., et al. (2017). Incidence, diagnosis, and management of QT prolongation induced by cancer therapies: a systematic review. J Am Heart Assoc, 6(12), e007724.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Blackhall, F. H., O’Brien, M., Schmid, P., et al. (2010). A phase I study of Vandetanib in combination with vinorelbine/cisplatin or gemcitabine/cisplatin as first-line treatment for advanced non-small cell lung cancer. J Thorac Oncol, 5(8), 1285–1288.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Liu, Y., Liu, Y., Fan, Z. W., Li, J., & Xu, G. G. (2015). Meta-analysis of the risks of hypertension and QTc prolongation in patients with advanced non-small cell lung cancer who were receiving vandetanib. Eur J Clin Pharmacol, 71(5), 541–547.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Malumbres, M., & Barbacid, M. (2001). To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer, 1(3), 222–231.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Slamon, D. J., Neven, P., Chia, S., et al. (2018). Phase III randomized study of ribociclib and fulvestrant in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: MONALEESA-3. J Clin Oncol, 36(24), 2465–2472.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Holkova, B., Supko, J. G., Ames, M. M., et al. (2013). A phase I trial of vorinostat and alvocidib in patients with relapsed, refractory, or poor prognosis acute leukemia, or refractory anemia with excess blasts-2. Clin Cancer Res, 19(7), 1873–1883.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    O’Connor, O. A., Horwitz, S., Masszi, T., et al. (2015). Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) Study. J Clin Oncol, 33(23), 2492–2499.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Infante, J. R., Cassier, P. A., Gerecitano, J. F., et al. (2016). A phase I study of the cyclin-dependent kinase 4/6 inhibitor ribociclib (LEE011) in patients with advanced solid tumors and lymphomas. Clin Cancer Res, 22(23), 5696–5705.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kuropkat, C., Griem, K., Clark, J., Rodriguez, E. R., Hutchinson, J., & Taylor, S. G. (1999). Severe cardiotoxicity during 5-fluorouracil chemotherapy: a case and literature report. Am J Clin Oncol, 22(5), 466–470.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Guglin, M., Aljayeh, M., Saiyad, S., Ali, R., & Curtis, A. B. (2009). Introducing a new entity: chemotherapy-induced arrhythmia. Europace., 11(12), 1579–1586.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Sarubbi, B., Orditura, M., Ducceschi, V., et al. (1997). Ventricular repolarization time indexes following anthracycline treatment. Heart Vessel, 12(6), 262–266.CrossRefGoogle Scholar
  97. 97.
    Binah, O., Cohen, I. S., & Rosen, M. R. (1983). The effects of adriamycin on normal and ouabain-toxic canine Purkinje and ventricular muscle fibers. Circ Res, 53(5), 655–662.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Duan, J., Tao, J., Zhai, M., et al. (2018). Anticancer drugs-related QTc prolongation, torsade de pointes and sudden death: current evidence and future research perspectives. Oncotarget., 9(39), 25738–25749.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kosmas, C., Kallistratos, M. S., Kopterides, P., et al. (2008). Cardiotoxicity of fluoropyrimidines in different schedules of administration: a prospective study. J Cancer Res Clin Oncol, 134(1), 75–82.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Sudhoff, T., Enderle, M. D., Pahlke, M., et al. (2004). 5-Fluorouracil induces arterial vasocontractions. Ann Oncol, 15(4), 661–664.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Fradley, M. G., Viganego, F., Kip, K., et al. (2017). Rates and risk of arrhythmias in cancer survivors with chemotherapy-induced cardiomyopathy compared with patients with other cardiomyopathies. Open Heart, 4(2), e000701.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Raabe, N. K., & Storstein, L. (1991). Cardiac arrhythmias in patients with small cell lung cancer and cardiac disease before, during and after doxorubicin administration. An evaluation of acute cardiotoxicity by continuous 24-hour Holter monitoring. Acta Oncol, 30(7), 843–846.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Aversano, R. C., & Boor, P. J. (1983). Acute doxorubicin-induced cardiac arrhythmias during ether anesthesia. Res Commun Chem Pathol Pharmacol, 41(2), 345–348.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Gorelik, J., Vodyanoy, I., Shevchuk, A. I., Diakonov, I. A., Lab, M. J., & Korchev, Y. E. (2003). Esmolol is antiarrhythmic in doxorubicin-induced arrhythmia in cultured cardiomyocytes - determination by novel rapid cardiomyocyte assay. FEBS Lett, 548(1-3), 74–78.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Bischiniotis, T. S., Lafaras, C. T., Platogiannis, D. N., Moldovan, L., Barbetakis, N. G., & Katseas, G. P. (2005). Intrapericardial cisplatin administration after pericardiocentesis in patients with lung adenocarcinoma and malignant cardiac tamponade. Hell J Cardiol, 46(5), 324–329.Google Scholar
  106. 106.
    Ganatra, S., & Neilan, T. G. (2018). Immune checkpoint inhibitor-associated myocarditis. Oncologist., 23(8), 879–886.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Arteaga, C. L., & Engelman, J. A. (2014). ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell, 25(3), 282–303.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Zhao, Y. Y., Sawyer, D. R., Baliga, R. R., et al. (1998). Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem, 273(17), 10261–10269.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Rao, P., Liu, Z., Duan, H., et al. (2019). Pretreatment with neuregulin-1 improves cardiac electrophysiological properties in a rat model of myocardial infarction. Exp Ther Med, 17(4), 3141–3149.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Florido, R., Smith, K. L., Cuomo, K. K., & Russell, S. D. (2017). Cardiotoxicity from human epidermal growth factor receptor-2 (HER2) targeted therapies. J Am Heart Assoc, 6(9), e006915.  https://doi.org/10.1161/JAHA.117.006915.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Ou, S. H., Tang, Y., Polli, A., Wilner, K. D., & Schnell, P. (2016). Factors associated with sinus bradycardia during crizotinib treatment: a retrospective analysis of two large-scale multinational trials (PROFILE 1005 and 1007). Cancer Med, 5(4), 617–622.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Zhang, Z., Huang, T. Q., Nepliouev, I., et al. (2017). Crizotinib inhibits hyperpolarization-activated cyclic nucleotide-gated channel 4 activity. Cardiooncology., 3, 1.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Mostaghel, E. A., & Lin, D. W. (2014). Practical guide to the use of abiraterone in castration resistant prostate cancer. Can J Urol, 21(2 Supp 1), 57–63.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Bertilsson, L., Dahl, M. L., Dalen, P., & Al-Shurbaji, A. (2002). Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol, 53(2), 111–122.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Arbuck, S. G., Strauss, H., Rowinsky, E., et al. (1993). A reassessment of cardiac toxicity associated with Taxol. J Natl Cancer Inst Monogr, 15, 117–130.Google Scholar
  116. 116.
    Armanious, M. A., Mishra, S., & Fradley, M. G. (2018). Electrophysiologic toxicity of chemoradiation. Curr Oncol Rep, 20(6), 45.  https://doi.org/10.1007/s11912-018-0691-0.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Khan, M. A., Masood, N., Husain, N., Ahmad, B., Aziz, T., & Naeem, A. (2012). A retrospective study of cardiotoxicities induced by 5-fluouracil (5-FU) and 5-FU based chemotherapy regimens in Pakistani adult cancer patients at Shaukat Khanum Memorial Cancer Hospital & Research Center. J Pak Med Assoc, 62(5), 430–434.PubMedPubMedCentralGoogle Scholar
  118. 118.
    McGuire, W. P., Rowinsky, E. K., Rosenshein, N. B., et al. (1989). Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann Intern Med, 111(4), 273–279.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Bovelli, D., Plataniotis, G., Roila, F., & Group EGW. (2010). Cardiotoxicity of chemotherapeutic agents and radiotherapy-related heart disease: ESMO Clinical Practice Guidelines. Ann Oncol, 21(Suppl 5), v277–v282.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Alsaab, H. O., Sau, S., Alzhrani, R., et al. (2017). PD-1 and PD-L1 Checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol, 8, 561.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Mahmood, S. S., Fradley, M. G., Cohen, J. V., et al. (2018). Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol, 71(16), 1755–1764.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Katsume, Y., Isawa, T., Toi, Y., et al. (2018). Complete atrioventricular block associated with pembrolizumab-induced acute myocarditis: the need for close cardiac monitoring. Intern Med, 57(21), 3157–3162.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cardio-Oncology Program, Division of Cardiovascular MedicineUniversity of South Florida Morsani College of Medicine and H. Lee Moffitt Cancer Center and Research InstituteTampaUSA

Personalised recommendations