Novel Embolic Protection Device: a Feasibility Study

  • Elon Reshef
  • Doron Bushi
  • Udi NussinovitchEmail author
Original Article


Stroke is ranked as the second leading cause of death worldwide. Ischemic stroke commonly results from emboli that originate in the heart among high-risk patients, such as those who develop atrial fibrillation. Yet, treatment is currently limited to anticoagulants, which may be associated with life-threatening bleeding. Our aim was to develop an alternative, device-based approach for continuous stroke prevention in high-risk patients. To this end, a novel endovascular tubular mesh was designed to be implanted in the aortic arch and to reroute emboli away from critical cerebral arteries. The feasibility of this approach as a means of ischemic stroke prevention was tested in vitro. The simulated cerebral perfusion pressures were not affected by the device. Also, the device efficiently diverted clinically meaningful embolic particles away from the cerebral circulation. It is proposed that this device could be used to reroute cardio-emboli away from intracranial vessels as a means of stroke prevention among patients for which anticoagulants are contraindicated.


Stroke Embolic protection Anticoagulants Left atrial appendage occlusion 



Oral anticoagulants


Atrial fibrillation


Internal carotid artery


Large vessel occlusions


Left atrial appendage occlusion


Middle cerebral artery



We thank Faye Schreiber for editorial assistance. Also, we wish to thank Ohad Shaplan (Pangolin, Inc.) and Uri Shpolanski (Physiomodels, Inc.) for their help with setting up the experimental systems and data collection, respectively.


This study was funded by the Israel Innovation Authority.

Compliance with Ethical Standards

Conflict of Interests

The study was conducted by InVatin Technologies, Ltd. InVatin Technologies, Ltd was founded by Udi Nussinovitch, MD, PhD. UN and ER are employees of InVatin Technologies, Ltd. DB is a consultant for InVatin Technologies, Ltd.

Ethical Approval

This article does not include any studies with human participants or animals performed by any of the authors.

Supplementary material

12265_2019_9920_MOESM1_ESM.mp4 (1.4 mb)
Video 1. Fluoroscopic imaging of embolization of a large number of embolic particles to unprotected simulated cerebral circulation. Notice that a substantial portion of the beads are carried to the simulated cerebral vessels. (MP4 1456 kb)
12265_2019_9920_MOESM2_ESM.mp4 (2.1 mb)
Video 2. Fluoroscopic imaging of radiopaque particles diverted away from the simulated cerebral circulation following implantation of the device. (MP4 2104 kb)


  1. 1.
    Benjamin, E. J., Virani, S. S., Callaway, C. W., Chamberlain, A. M., Chang, A. R., Cheng, S., Chiuve, S. E., Cushman, M., Delling, F. N., Deo, R., et al. (2018). Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation., 137, e67–e492.CrossRefGoogle Scholar
  2. 2.
    Wang, W., Jiang, B., Sun, H., Ru, X., Sun, D., Wang, L., Wang, L., Jiang, Y., Li, Y., Wang, Y., et al. (2017). Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 Adults. Circulation., 135, 759–771.CrossRefGoogle Scholar
  3. 3.
    Donkor, E. S. (2018). Stroke in the 21(st) century: a snapshot of the burden, epidemiology, and quality of life. Stroke Research and Treatment, 2018, 3238165.CrossRefGoogle Scholar
  4. 4.
    Sacco, R. L., Kasner, S. E., Broderick, J. P., Caplan, L. R., Connors, J. J., Culebras, A., Elkind, M. S., George, M. G., Hamdan, A. D., Higashida, R. T., et al. (2013). An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke., 44, 2064–2089.CrossRefGoogle Scholar
  5. 5.
    Warlow, C. P. (1998). Epidemiology of stroke. Lancet, 352(Suppl 3), SIII1–SIII4.CrossRefGoogle Scholar
  6. 6.
    Malhotra, K., Gornbein, J., & Saver, J. L. (2017). Ischemic strokes due to large-vessel occlusions contribute disproportionately to stroke-related dependence and death: a review. Frontiers in Neurology, 8, 651.CrossRefGoogle Scholar
  7. 7.
    Smith, W. S., Lev, M. H., English, J. D., Camargo, E. C., Chou, M., Johnston, S. C., Gonzalez, G., Schaefer, P. W., Dillon, W. P., Koroshetz, W. J., & Furie, K. L. (2009). Significance of large vessel intracranial occlusion causing acute ischemic stroke and TIA. Stroke., 40, 3834–3840.CrossRefGoogle Scholar
  8. 8.
    European Heart Rhythm A, European Association for Cardio-Thoracic S, Camm, A. J., Kirchhof, P., Lip, G. Y., Schotten, U., Savelieva, I., Ernst, S., Van Gelder, I. C., Al-Attar, N., et al. (2010). Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). European Heart Journal, 31, 2369–2429.CrossRefGoogle Scholar
  9. 9.
    (1993). Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke. EAFT (European Atrial Fibrillation Trial) Study Group.Lancet, 342, 1255–1262.Google Scholar
  10. 10.
    Graham, D. J., Baro, E., Zhang, R., Liao, J., Wernecke, M., Reichman, M. E., Hu, M., Illoh, O., Wei, Y., Goulding, M. R., et al. (2019). Comparative stroke, bleeding, and mortality risks in older medicare patients treated with oral anticoagulants for nonvalvular atrial fibrillation. The American Journal of Medicine, 132(596-604), e511.Google Scholar
  11. 11.
    Hart, R. G., Pearce, L. A., & Aguilar, M. I. (2007). Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Annals of Internal Medicine, 146, 857–867.CrossRefGoogle Scholar
  12. 12. TO ANTICOAGULATION&source=search_result&selectedTitle=4~150&usage_type=default&display_rank=4#H4273329371.
  13. 13.
    Perrotta, L., Bordignon, S., Dugo, D., Furnkranz, A., Konstantinou, A., Ricciardi, G., Pieragnoli, P., Schmidt, B., & Chun, K. J. (2014). Complications from left atrial appendage exclusion devices. Journal of Atrial Fibrillation, 7, 1034.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Holmes, D. R., Reddy, V. Y., Turi, Z. G., Doshi, S. K., Sievert, H., Buchbinder, M., Mullin, C. M., Sick, P., & Investigators, P. A. (2009). Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomised non-inferiority trial. Lancet., 374, 534–542.CrossRefGoogle Scholar
  15. 15.
    Turagam, M. K., Velagapudi, P., Kar, S., Holmes, D., Reddy, V. Y., Refaat, M. M., Di Biase, L., Al-Ahmed, A., Chung, M. K., Lewalter, T., et al. (2018). Cardiovascular therapies targeting left atrial appendage. Journal of the American College of Cardiology, 72, 448–463.CrossRefGoogle Scholar
  16. 16.
    Holmes Jr., D. R., Kar, S., Price, M. J., Whisenant, B., Sievert, H., Doshi, S. K., Huber, K., & Reddy, V. Y. (2014). Prospective randomized evaluation of the Watchman Left Atrial Appendage Closure device in patients with atrial fibrillation versus long-term warfarin therapy: the PREVAIL trial. Journal of the American College of Cardiology, 64, 1–12.CrossRefGoogle Scholar
  17. 17.
    Reddy, V. Y., Doshi, S. K., Kar, S., Gibson, D. N., Price, M. J., Huber, K., Horton, R. P., Buchbinder, M., Neuzil, P., Gordon, N. T., et al. (2017). 5-year outcomes after left atrial appendage closure: from the PREVAIL and PROTECT AF trials. Journal of the American College of Cardiology, 70, 2964–2975.CrossRefGoogle Scholar
  18. 18.
    Cho, G. Y., Lee, C. W., Hong, M. K., Kim, J. J., Park, S. W., & Park, S. J. (2001). Effects of stent design on side branch occlusion after coronary stent placement. Catheterization and Cardiovascular Interventions, 52, 18–23.CrossRefGoogle Scholar
  19. 19.
    Malina, M., Brunkwall, J., Ivancev, K., Lindh, M., Lindblad, B., & Risberg, B. (1997). Renal arteries covered by aortic stents: clinical experience from endovascular grafting of aortic aneurysms. European Journal of Vascular and Endovascular Surgery, 14, 109–113.CrossRefGoogle Scholar
  20. 20.
    Grad, Y., Sievert, H., Nishri, B., Stone, G. W., Katzen, B. T., Yodfat, O., Higashida, R., Harris, D., Wakhloo, A. K., Assaf, Y., et al. (2008). A novel endovascular device for emboli rerouting: part I: evaluation in a Swine model. Stroke., 39, 2860–2866.CrossRefGoogle Scholar
  21. 21.
    Siewiorek, G. M., Wholey, M. H., & Finol, E. A. (2009). In vitro performance assessment of distal protection filters: pulsatile flow conditions. Journal of Endovascular Therapy, 16, 735–743.CrossRefGoogle Scholar
  22. 22.
    Ionita, C. N., Bednarek, D. R., & Rudin, S. (2013). Evaluation of embolic deflection device using optical particle tracking. Proceedings of SPIE The International Society for Optical Engineering, 8672.Google Scholar
  23. 23.
    Kurzhals, A., Matthies, J. B., Andresen, R., Wissgott, C., Schmitz, K. P., Grabow, N., & Schmidt, W. (2017). Efficiency test of current carotid embolic protection devices. Biomedizinische Technik. Biomedical Engineering, 62, 349–355.CrossRefGoogle Scholar
  24. 24.
    Ohyama, M., Mizushige, K., Ohyama, H., Takahashi, T., Hosomi, N., Ichihara, S., & Kohno, M. (2002). Carotid turbulent flow observed by convergent color Doppler flowmetry in silent cerebral infarction. The International Journal of Cardiovascular Imaging, 18, 119–124.CrossRefGoogle Scholar
  25. 25.
    Saver, J. L., Jahan, R., Levy, E. I., Jovin, T. G., Baxter, B., Nogueira, R. G., Clark, W., Budzik, R., Zaidat, O. O., & Trialists, S. (2012). Solitaire flow restoration device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial. Lancet., 380, 1241–1249.CrossRefGoogle Scholar
  26. 26.
    Hendriks, J. M., Zindler, J. D., van der Lugt, A., Pattynama, P. M., van Sambeek, M. R., Bosch, J. L., & van Dijk, L. C. (2006). Embolic protection filters for carotid stenting: differences in flow obstruction depending on filter construction. Journal of Endovascular Therapy, 13, 47–50.CrossRefGoogle Scholar
  27. 27.
    Zhang, C., Wang, L., Li, X., Li, S., Pu, F., Fan, Y., & Li, D. (2014). Modeling the circle of Willis to assess the effect of anatomical variations on the development of unilateral internal carotid artery stenosis. Bio-medical Materials and Engineering, 24, 491–499.PubMedGoogle Scholar
  28. 28.
    Marder, V. J., Chute, D. J., Starkman, S., Abolian, A. M., Kidwell, C., Liebeskind, D., Ovbiagele, B., Vinuela, F., Duckwiler, G., Jahan, R., et al. (2006). Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke. Stroke., 37, 2086–2093.CrossRefGoogle Scholar
  29. 29.
    Grad Y, Nishri B, Harris D, Einav S, Lieber BB, Yodfat O. (2002). Permanent arterial blood filtration for embolic stroke prevention - the hemodynamics of a new concept.Second Joint Embs-Bmes Conference 2002, Vols 1-3, Conference Proceedings (pp. 1601-1602).Google Scholar
  30. 30.
    Folie, B. J., & McIntire, L. V. (1989). Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow. Biophysical Journal, 56, 1121–1141.CrossRefGoogle Scholar
  31. 31.
    Bluestein, D., Niu, L., Schoephoerster, R. T., & Dewanjee, M. K. (1997). Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Annals of Biomedical Engineering, 25, 344–356.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.InVatin Technologies, Ltd.KatzrinIsrael
  2. 2.Department of Cardiology, and Applicative Cardiovascular Research Center (ACRC)Meir Medical CenterKfar SabaIsrael
  3. 3.Sackler Faculty of MedicineTel Aviv University Tel AvivIsrael

Personalised recommendations