Upregulation of Circulating Cardiomyocyte-Enriched miR-1 and miR-133 Associate with the Risk of Coronary Artery Disease in Type 2 Diabetes Patients and Serve as Potential Biomarkers

  • Haifa Abdulla Al-Muhtaresh
  • Abdel Halim Salem
  • Ghada Al-KafajiEmail author
Original Article


Circulating miRNAs are increasingly suggested as clinical biomarker for diseases. We evaluated the expression of circulating cardiomyocyte-enriched miR-1 and miR-133 by real-time PCR in blood from patients with type 2 diabetes (T2D) without and with coronary artery disease (CAD) and healthy controls, investigated their association with the risk of CAD risk and their potential as biomarkers. The two miRNAs were upregulated in patients with T2D and CAD compared with controls, associated with CAD risk and remained significant after adjustment for multiple confounders. LDL-C was a positive predictor for miR-1 and miR-133, and mean blood pressure was also a positive predictor for miR-133. Both miRNAs strongly distinguished CAD from controls. miR-1 significantly distinguished CAD from T2D with higher diagnostic ability than miR-133, whereas the miR-1/miR-133 combination improved the diagnostic value. Upregulation of circulating miR-1 and miR-133 associate with the risk of CAD in T2D patients and may serve as diagnostic biomarkers.


Circulating miRNAs Type 2 diabetes Coronary artery disease Biomarkers 



Low-density lipoprotein cholesterol



We would like to acknowledge the technical support of the Research Unit staff at Al-Jawhara Centre for Molecular Medicine, Genetics and Inherited Disorders in the College of Medicine and Medical Sciences, Arabian Gulf University.


The present study was supported by a research grant (No. 81) by the College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain and a PhD Research Grant by Kingdom of Saudi Arabia.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Ethical approval to conduct the current study was obtained from the Medical Research and Ethics Committee in the College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain. The participants were given a complete description of the study, and provided written informed consents according to the guidelines of the College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain.


  1. 1.
    Wild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004). Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care, 27, 1047–1053.CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Alhyas, L., McKay, A., & Majeed, A. (2012). Prevalence of type 2 diabetes in the states of the co-operation council for the Arab states of the Gulf: A systematic review. PLoS One, 7, e40948.CrossRefGoogle Scholar
  4. 4.
    Nathan, D. M. (1993). Long-term complications of diabetes mellitus. The New England Journal of Medicine, 328, 1676–1685.CrossRefGoogle Scholar
  5. 5.
    Laakso, M. (2010). Cardiovascular disease in type 2 diabetes from population to man to mechanisms: The Kelly West Award Lecture 2008. Diabetes Care, 33, 442–449.CrossRefGoogle Scholar
  6. 6.
    Fuster, V., Badimon, L., Badimon, J. J., & Chesebro, J. H. (1992). The pathogenesis of coronary artery disease and the acute coronary syndromes. The New England Journal of Medicine, 326, 242–250.CrossRefGoogle Scholar
  7. 7.
    Libby, P., & Theroux, P. (2005). Pathophysiology of coronary artery disease. Circulation, 111, 3481–3488.CrossRefGoogle Scholar
  8. 8.
    Gillies, C. L., Abrams, K. R., Lambert, P. C., Cooper, N. J., Sutton, A. J., Hsu, R. T., et al. (2007). Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: Systematic review and meta-analysis. BMJ, 334(7588), 299.CrossRefGoogle Scholar
  9. 9.
    Li, G., Zhang, P., Wang, J., Gregg, E. W., Yang, W., Gong, Q., et al. (2008). The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: A 20-year follow-up study. Lancet, 371, 1783–1789.CrossRefGoogle Scholar
  10. 10.
    Bartel, D. P. (2004). Micrornas: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 181–197.CrossRefGoogle Scholar
  11. 11.
    He, L., & Hannon, G. J. (2004). Micrornas: Small rnas with a big role in gene regulation. Nature Reviews. Genetics, 5, 522–531.CrossRefGoogle Scholar
  12. 12.
    Kloosterman, W. P., & Plasterk, R. H. (2006). The diverse functions of microRNAs in animal development and disease. Developmental Cell, 11, 441–450.CrossRefGoogle Scholar
  13. 13.
    Latronico, M. V., Catalucci, D., & Condorelli, G. (2007). Emerging role of microRNAs in cardiovascular biology. Circulation Research, 101, 1225–1236.CrossRefGoogle Scholar
  14. 14.
    Pandey, A. K., Agarwal, P., Kaur, K., & Datta, M. (2009). MicroRNAs in diabetes: Tiny players in big disease. Cellular Physiology and Biochemistry, 23, 221–232.CrossRefGoogle Scholar
  15. 15.
    Ardekani, A. M., & Naeini, M. (2010). The role of microRNAs in human diseases. Avicenna Journal of Medical Biotechnology, 2, 161–179.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Condorelli, G., Latronico, M. V., & Cavarretta, E. (2014). microRNAs in cardiovascular diseases current: Knowledge and the road ahead. Journal of the American College of Cardiology, 63(21), 2177–2187.CrossRefGoogle Scholar
  17. 17.
    Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518.CrossRefGoogle Scholar
  18. 18.
    Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research, 18, 997–1006.CrossRefGoogle Scholar
  19. 19.
    Meder, B., Keller, A., Vogel, B., Haas, J., Sedaghat-Hameddani, F., Kayvanpour, E., et al. (2011). MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Research in Cardiology, 106, 13–23.CrossRefGoogle Scholar
  20. 20.
    Al-Kafaji, G., Al-Mahroos, G., Alsayed, N. A., Hasan, Z. A., Nawaz, S., & Bakhiet, M. (2015). Peripheral blood microRNA-15a as a potential biomarker for type 2 diabetes mellitus and pre-diabetes. Molecular Medicine Reports, 12(5), 7485–7490.CrossRefGoogle Scholar
  21. 21.
    Al-Kafaji, G., Al-Mahroos, G., Al-Muhtaresh, H. A., Skrypnyk, C., Sabry, M. A., & Ramadan, A. R. (2016). Decreased expression of circulating microRNA-126 in patients with type 2 diabetic nephropathy: A potential blood-based biomarker. Experimental and Therapeutic Medicine, 12(2), 815–822.CrossRefGoogle Scholar
  22. 22.
    Al-Kafaji, G., Al Naieb, Z. T., & Bakhiet, M. (2016). Increased oncogenic microRNA-18a expression in peripheral blood of patients with prostate cancer: A potential role as new noninvasive biomarker. Oncology Letters, 11(2), 1201–1120.CrossRefGoogle Scholar
  23. 23.
    Al-Muhtaresh, H., & Al-Kafaji, G. (2018). Evaluation of two-diabetes related microRNAs suitability as earlier blood biomarkers for detecting prediabetes and type 2 diabetes mellitus. Journal of Clinical Medical, 7(2), 12.CrossRefGoogle Scholar
  24. 24.
    Fichtlscherer, S., De Rosa, S., Fox, H., Schwietz, T., Fischer, A., Liebetrau, C., et al. (2010). Circulating microRNAs in patients with coronary artery disease. Circulation Research, 107, 677–684.CrossRefGoogle Scholar
  25. 25.
    Rao, P. K., Kumar, R. M., Farkhondeh, M., Baskerville, S., & Lodish, H. F. (2006). Myogenic factors that regulate expression of muscle-specific microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 103, 8721–8726.CrossRefGoogle Scholar
  26. 26.
    Townley-Tilson, W. H., Callis, T. E., & Wang, D. (2010). MicroRNAs 1, 133, and 206: Critical factors of skeletal and cardiac muscle development, function, and disease. The International Journal of Biochemistry & Cell Biology, 42, 1252–1255.CrossRefGoogle Scholar
  27. 27.
    Chistiakov, D. A., Orekhov, A. N., & Bobryshev, Y. V. (2016). Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). Journal of Molecular and Cellular Cardiology, 94, 107–121.CrossRefGoogle Scholar
  28. 28.
    Zhao, Y., Samal, E., & Srivastava, D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 436, 214–220.CrossRefGoogle Scholar
  29. 29.
    Ikeda, S., He, A., Kong, S. W., Lu, J., Bejar, R., Bodyak, N., et al. (2009). MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Molecular and Cellular Biology, 29, 2193–2204.CrossRefGoogle Scholar
  30. 30.
    Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., et al. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 38, 228–233.CrossRefGoogle Scholar
  31. 31.
    Wang, G., Zhu, J., Zhang, J., Li, Q., Li, Y., He, J., et al. (2010). Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. European Heart Journal, 31, 659–666.CrossRefGoogle Scholar
  32. 32.
    Kuwabara, Y., Ono, K., Horie, T., Nishi, H., Nagoa, K., Kinoshita, M., et al. (2011). Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circulation. Cardiovascular Genetics, 4(4), 446–454.CrossRefGoogle Scholar
  33. 33.
    Briasoulis, A., Tousoulis, D., Vogiatzi, G., Siasos, G., Papageorgiou, N., Oikonomou, E., et al. (2013). MicroRNAs: Biomarkers for cardiovascular disease in patients with diabetes mellitus. Current Topics in Medicinal Chemistry, 13(13), 1533–1539.CrossRefGoogle Scholar
  34. 34.
    Al-Kafaji, G., Al-Mahroos, G., Al-Muhtaresh, H., Sabry, M. A., Abdul Razzak, R., & Salem, A. H. (2017). Circulating endothelium-enriched microRNA-126 as a potential biomarker for coronary artery disease in type 2 diabetes mellitus patients. Biomarkers, 22(3–4), 268–278.CrossRefGoogle Scholar
  35. 35.
    AL-Subaihi, A. (2003). Sample size determination. Influencing factors and calculation strategies for survey research. Saudi Medical Journal, 24(4), 323–330.PubMedGoogle Scholar
  36. 36.
    Alberti, K. G., & Zimmet, P. Z. (1998). Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic Medicine, 15, 539–553.CrossRefGoogle Scholar
  37. 37.
    Wang, X. (2009). A PCR-based platform for microRNA expression profiling studies. RNA, 15, 716–723.CrossRefGoogle Scholar
  38. 38.
    Feng, Y., Niu, L.-L., Wei, W., Zhang, W.-Y., Li, X.-Y., Cao, J.-H., & Zhao, S.-H. (2013). A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation. Cell Death & Disease, 4, e934.CrossRefGoogle Scholar
  39. 39.
    Wong, L., Lee, K., Russell, I., & Chen, C. (2007). Endogenous controls for real time quantitation of miRNA using TaqManVR MicroRNA assays. New York: Macmillan Publishers Ltd..Google Scholar
  40. 40.
    Roggli, E., Britan, A., Gattesco, S., Lin-Marq, N., Abderrahmani, A., Meda, P., et al. (2010). Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes, 59, 978–986.CrossRefGoogle Scholar
  41. 41.
    Poy, M. N., Hausser, J., Trajkovski, M., Braunc, M., Collinsc, S., Rorsmanc, P., et al. (2009). miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proceedings of the National Academy of Sciences of the United States of America, 106, 5813–5818.CrossRefGoogle Scholar
  42. 42.
    Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–618.CrossRefGoogle Scholar
  43. 43.
    Terentyev, D., Belevych, A. E., Terentyeva, R., Martin, M. M., Malana, G. E., Kuhn, D. E., et al. (2009). miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circulation Research, 104, 514–521.CrossRefGoogle Scholar
  44. 44.
    Luo, X., Lin, H., Pan, Z., Xiao, J., Zhang, Y., Lu, Y., et al. (2008). Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. The Journal of Biological Chemistry, 283, 20045–20052.CrossRefGoogle Scholar
  45. 45.
    Williams, A. H., Liu, N., van Rooij, E., & Olson, E. N. (2009). MicroRNA control of muscle development and disease. Current Opinion in Cell Biology, 21, 461–469.CrossRefGoogle Scholar
  46. 46.
    Liu, N., Bezprozvannaya, S., Williams, A. H., Qi, X., Richardson, J. A., Bassel-Duby, R., et al. (2008). microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes & Development, 22, 3242–3254.CrossRefGoogle Scholar
  47. 47.
    D’Alessandra, Y., Devanna, P., Limana, F., Straino, S., Di Carlo, A., Brambilla, P. G., et al. (2010). Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. European Heart Journal, 31, 2765–2773.CrossRefGoogle Scholar
  48. 48.
    Matheus, A. S., Tannus, L. R., Cobas, R. A., Palm, A. C. C., Negrato, C. A., & Gomes, M. B. (2013). Impact of diabetes on cardiovascular disease: An update. International Journal of Hypertension, 2013, 653789.CrossRefGoogle Scholar
  49. 49.
    Dokken, B. B. (2008). The pathophysiology of cardiovascular disease and diabetes: Beyond blood pressure and lipids. Diabetes Spectrum: A Publication of the American Diabetes Association, 21(3), 160–165.CrossRefGoogle Scholar
  50. 50.
    Grundy, S. M., Pasternak, R., Greenland, P., Smith, S., Jr., & Fuster, V. (1999). Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations. A statement for healthcare professionals from the American heart association and the American college of cardiology. Circulation, 100, 1481–1492.CrossRefGoogle Scholar
  51. 51.
    Howard, B. V., Robbins, D. C., Sievers, M. L., et al. (2000). LDL cholesterol as a strong predictor of coronary heart disease in diabetic individuals with insulin resistance and low LDL. The Strong heart study. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 830–835.CrossRefGoogle Scholar
  52. 52.
    Escobar, E. (2002). Hypertension and coronary heart disease. Journal of Human Hypertension, 16(1), S61–S63.CrossRefGoogle Scholar
  53. 53.
    Otsuka, T., Takada, H., Nishiyama, Y., Kodani, E., Saiki, Y., Kato, K., & Kawada, T. (2016). Dyslipidemia and the risk of developing hypertension in a working-age male population. Journal of the American Heart Association, 5, e003053.CrossRefGoogle Scholar
  54. 54.
    de Gonzalo-Calvo, D., van der Meer, R. W., Rijzewijk, L. J., Smit, J. W. A., Revuelta-Lopez, E., Nasarre, L., et al. (2017). Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes. Scientific Reports, 7(1), 47.CrossRefGoogle Scholar
  55. 55.
    Zhang, Z., Joyce, B. T., Kresovich, J. K., Zheng, Y., Zhong, J., Patel, R., et al. (2017). Blood pressure and expression of microRNAs in whole blood. PLoS One, 12(3), e0173550.CrossRefGoogle Scholar
  56. 56.
    Jepsen, A. M., Langsted, A., Varbo, A., Bang, L. E., Kamstrup, P. R., & Nordestgaard, B. G. (2016). Increased remnant cholesterol explains part of residual risk of all-cause mortality in 5414 patients with ischemic heart disease. Clinical Chemistry, 62(4), 593–604.CrossRefGoogle Scholar
  57. 57.
    Sampson, U. K., Fazio, S., & Linton, M. F. (2012). Residual cardiovascular risk despite optimal LDL cholesterol reduction with statins: The evidence, etiology, and therapeutic challenges. Current Atherosclerosis Reports, 14(1), 1–10.CrossRefGoogle Scholar
  58. 58.
    Fruchart, J. C., Davignon, J., Hermans, M. P., Al-Rubeaan, K., Amarenco, P., Assmann, G., Barter, P., Betteridge, J., Bruckert, E., Cuevas, A., Farnier, M., et al. (2014). Residual macrovascular risk in 2013: What have we learned? Cardiovascular Diabetology, 13(1), 26.CrossRefGoogle Scholar
  59. 59.
    Cui, Y., Blumenthal, R. S., Flaws, J. A., Whiteman, M. K., Langenberg, P., Bachorik, P. S., & Bush, T. L. (2001). Non-high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Archives of Internal Medicine, 161, 1413–1419.CrossRefGoogle Scholar
  60. 60.
    Lu, W., Resnick, H. E., Jablonski, K. A., Jones, K. L., Jain, A. K., Howard, W. J., Robbins, D. C., & Howard, B. V. (2003). Non-HDL cholesterol as a predictor of cardiovascular disease in type 2 diabetes. The strong heart study. Diabetes Care, 26(1), 16–23.CrossRefGoogle Scholar
  61. 61.
    Kroh, E. M., Parkin, R. K., Mitchell, P. S., & Tewari, M. (2010). Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods, 50, 298–301.CrossRefGoogle Scholar
  62. 62.
    Li, Y., & Kowdley, K. V. (2012). Method for microRNA isolation from clinical serum samples. Analytical Biochemistry, 431(1), 69–75.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Molecular Medicine/Al-Jawhara Centre for Molecular Medicine, Genetics and Inherited Disorders, College of Medicine and Medical SciencesArabian Gulf UniversityManamaKingdom of Bahrain
  2. 2.Department of Anatomy, College of Medicine and Medical SciencesArabian Gulf UniversityManamaKingdom of Bahrain

Personalised recommendations