Advertisement

Autonomic Neuromodulation Acutely Ameliorates Left Ventricular Strain in Humans

  • Nicole Tran
  • Zain Asad
  • Khaled Elkholey
  • Benjamin J. Scherlag
  • Sunny S. Po
  • Stavros StavrakisEmail author
Original Article

Abstract

Low-level transcutaneous vagus nerve stimulation at the tragus (LLTS) is anti-adrenergic. We aimed to evaluate the acute effects of LLTS on left ventricular (LV) function and autonomic tone. Patients with diastolic dysfunction and preserved LV ejection fraction were enrolled in a prospective, randomized, double-blind, 2 × 2 cross-over study. Patients received two separate, 1-h sessions, at least 1 day apart, of active LLTS (20 Hz, 1 mA below the discomfort threshold) and sham stimulation. Echocardiography was performed after LLTS or sham stimulation to assess cardiac function. A 5-min ECG was performed to assess heart rate variability (HRV). Twenty-four patients were enrolled. LV global longitudinal strain improved by 1.8 ± 0.9% during active LLTS compared to sham stimulation (p = 0.001). Relative to baseline, HRV frequency domain components (low frequency, high frequency, and their ratio) were favorably altered after LLTS compared to sham stimulation (all p < 0.05). We concluded that LLTS acutely ameliorates cardiac mechanics by modulating the autonomic tone. Trial registration: NCT02983448

Keywords

Neuromodulation Transcutaneous vagus nerve stimulation Heart rate variability Diastolic dysfunction Left ventricular strain imaging 

Abbreviations

HFpEF

Heart failure with preserved ejection fraction

LV

Left ventricle

HFrEF

Heart failure with reduced ejection fraction

VNS

Vagus nerve stimulation

LLTS

Low-level transcutaneous vagus nerve stimulation

TENS

Transcutaneous electrical nerve stimulation

GLS

Global longitudinal strain

HRV

Heart rate variability

HF

High frequency

LF

Low frequency

Notes

Sources of Funding

This study was funded by an Oklahoma Shared Clinical and Translational Resources pilot grant (NIGMS IDeA-CTR U54-GM104938) to Stavros Stavrakis.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Human Subjects/Informed Consent Statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Animal Studies

No animal studies were carried out by the authors for this article.

References

  1. 1.
    Lam, C. S., Donal, E., Kraigher-Krainer, E., & Vasan, R. S. (2011). Epidemiology and clinical course of heart failure with preserved ejection fraction. European Journal of Heart Failure, 13(1), 18–28.PubMedCrossRefGoogle Scholar
  2. 2.
    Owan, T. E., Hodge, D. O., Herges, R. M., Jacobsen, S. J., Roger, V. L., & Redfield, M. M. (2006). Trends in prevalence and outcome of heart failure with preserved ejection fraction. The New England Journal of Medicine, 355(3), 251–259.PubMedCrossRefGoogle Scholar
  3. 3.
    Fonarow, G. C., Stough, W. G., Abraham, W. T., Albert, N. M., Gheorghiade, M., Greenberg, B. H., O'Connor, C. M., Sun, J. L., Yancy, C. W., & Young, J. B. (2007). Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. Journal of the American College of Cardiology, 50(8), 768–777.PubMedCrossRefGoogle Scholar
  4. 4.
    Tribouilloy, C., Rusinaru, D., Mahjoub, H., Souliere, V., Levy, F., Peltier, M., Slama, M., & Massy, Z. (2008). Prognosis of heart failure with preserved ejection fraction: a 5 year prospective population-based study. European Heart Journal, 29(3), 339–347.PubMedCrossRefGoogle Scholar
  5. 5.
    Butler, J., Fonarow, G. C., Zile, M. R., Lam, C. S., Roessig, L., Schelbert, E. B., Shah, S. J., Ahmed, A., Bonow, R. O., Cleland, J. G., Cody, R. J., Chioncel, O., Collins, S. P., Dunnmon, P., Filippatos, G., Lefkowitz, M. P., Marti, C. N., McMurray, J. J., Misselwitz, F., Nodari, S., O'Connor, C., Pfeffer, M. A., Pieske, B., Pitt, B., Rosano, G., Sabbah, H. N., Senni, M., Solomon, S. D., Stockbridge, N., Teerlink, J. R., Georgiopoulou, V. V., & Gheorghiade, M. (2014). Developing therapies for heart failure with preserved ejection fraction: current state and future directions. JACC Heart Failure, 2(2), 97–112.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Senni, M., Paulus, W. J., Gavazzi, A., Fraser, A. G., Diez, J., Solomon, S. D., Smiseth, O. A., Guazzi, M., Lam, C. S., Maggioni, A. P., Tschope, C., Metra, M., Hummel, S. L., Edelmann, F., Ambrosio, G., Stewart Coats, A. J., Filippatos, G. S., Gheorghiade, M., Anker, S. D., Levy, D., Pfeffer, M. A., Stough, W. G., & Pieske, B. M. (2014). New strategies for heart failure with preserved ejection fraction: the importance of targeted therapies for heart failure phenotypes. European Heart Journal, 35(40), 2797–2815.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Glezeva, N., & Baugh, J. A. (2014). Role of inflammation in the pathogenesis of heart failure with preserved ejection fraction and its potential as a therapeutic target. Heart Failure Reviews, 19(5), 681–694.PubMedCrossRefGoogle Scholar
  8. 8.
    Gomberg-Maitland, M., Shah, S. J., & Guazzi, M. (2016). Inflammation in heart failure with preserved ejection fraction: time to put out the fire. JACC Heart Failure, 4(4), 325–328.PubMedCrossRefGoogle Scholar
  9. 9.
    Paulus, W. J., & Tschope, C. (2013). A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. Journal of the American College of Cardiology, 62(4), 263–271.PubMedCrossRefGoogle Scholar
  10. 10.
    Kraigher-Krainer, E., Shah, A. M., Gupta, D. K., Santos, A., Claggett, B., Pieske, B., Zile, M. R., Voors, A. A., Lefkowitz, M. P., Packer, M., McMurray, J. J., Solomon, S. D., & Investigators, P. (2014). Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. Journal of the American College of Cardiology, 63(5), 447–456.PubMedCrossRefGoogle Scholar
  11. 11.
    Aikawa, T., Naya, M., Obara, M., Manabe, O., Tomiyama, Y., Magota, K., Yamada, S., Katoh, C., Tamaki, N., & Tsutsui, H. (2017). Impaired myocardial sympathetic innervation is associated with diastolic dysfunction in heart failure with preserved ejection fraction: (11)C-hydroxyephedrine PET study. Journal of Nuclear Medicine, 58(5), 784–790.PubMedCrossRefGoogle Scholar
  12. 12.
    Toledo, C., Andrade, D. C., Lucero, C., Arce-Alvarez, A., Diaz, H. S., Aliaga, V., Schultz, H. D., Marcus, N. J., Manriquez, M., Faundez, M., & Del Rio, R. (2017). Cardiac diastolic and autonomic dysfunction are aggravated by central chemoreflex activation in heart failure with preserved ejection fraction rats. The Journal of Physiology, 595(8), 2479–2495.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Pavlov, V. A., & Tracey, K. J. (2015). Neural circuitry and immunity. Immunologic Research, 63(1–3), 38–57.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Tracey, K. J. (2009). Reflex control of immunity. Nature Reviews. Immunology, 9(6), 418–428.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Beaumont, E., Wright, G. L., Southerland, E. M., Li, Y., Chui, R., KenKnight, B. H., Armour, J. A., & Ardell, J. L. (2016). Vagus nerve stimulation mitigates intrinsic cardiac neuronal remodeling and cardiac hypertrophy induced by chronic pressure overload in guinea pig. American Journal of Physiology. Heart and Circulatory Physiology, 310(10), H1349–H1359.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Fallgatter, A. J., Neuhauser, B., Herrmann, M. J., Ehlis, A. C., Wagener, A., Scheuerpflug, P., Reiners, K., & Riederer, P. (2003). Far field potentials from the brain stem after transcutaneous vagus nerve stimulation. Journal of Neural Transmission, 110(12), 1437–1443.PubMedCrossRefGoogle Scholar
  17. 17.
    Stavrakis, S., Humphrey, M. B., Scherlag, B. J., Hu, Y., Jackman, W. M., Nakagawa, H., Lockwood, D., Lazzara, R., & Po, S. S. (2015). Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. Journal of the American College of Cardiology, 65(9), 867–875.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Yu, L., Huang, B., Po, S. S., Tan, T., Wang, M., Zhou, L., Meng, G., Yuan, S., Zhou, X., Li, X., Wang, Z., Wang, S., & Jiang, H. (2017). Low-level Tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction: a proof-of-concept study. JACC. Cardiovascular Interventions, 10(15), 1511–1520.PubMedCrossRefGoogle Scholar
  19. 19.
    Clancy, J. A., Mary, D. A., Witte, K. K., Greenwood, J. P., Deuchars, S. A., & Deuchars, J. (2014). Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimulation, 7(6), 871–877.PubMedCrossRefGoogle Scholar
  20. 20.
    Nagueh, S. F., Smiseth, O. A., Appleton, C. P., Byrd, B. F., 3rd, Dokainish, H., Edvardsen, T., Flachskampf, F. A., Gillebert, T. C., Klein, A. L., Lancellotti, P., Marino, P., Oh, J. K., Alexandru Popescu, B., Waggoner, A. D., Houston, T., Oslo, N., Phoenix, A., Nashville, T., Hamilton, O. C., Uppsala, S., Ghent, Liege, B., Cleveland, O., Novara, I., Rochester, M., Bucharest, R., & St. Louis, M. (2016). Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal Cardiovascular Imaging, 17(12), 1321–1360.PubMedCrossRefGoogle Scholar
  21. 21.
    Peuker, E. T., & Filler, T. J. (2002). The nerve supply of the human auricle. Clinical Anatomy, 15(1), 35–37.PubMedCrossRefGoogle Scholar
  22. 22.
    Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV—heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210–220.PubMedCrossRefGoogle Scholar
  23. 23.
    (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, Circulation, 93(5) 1043–65.Google Scholar
  24. 24.
    Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research—recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8, 213.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Freeman, R. (2006). Assessment of cardiovascular autonomic function. Clinical Neurophysiology, 117(4), 716–730.PubMedCrossRefGoogle Scholar
  26. 26.
    Mordi, I. R., Singh, S., Rudd, A., Srinivasan, J., Frenneaux, M., Tzemos, N., & Dawson, D. K. (2018). Comprehensive echocardiographic and cardiac magnetic resonance evaluation differentiates among heart failure with preserved ejection fraction patients, hypertensive patients, and healthy control subjects. JACC: Cardiovascular Imaging, 11(4), 577–585.PubMedGoogle Scholar
  27. 27.
    Deuchars, S. A., Lall, V. K., Clancy, J., Mahadi, M., Murray, A., Peers, L., & Deuchars, J. (2018). Mechanisms underpinning sympathetic nervous activity and its modulation using transcutaneous vagus nerve stimulation. Experimental Physiology, 103(3), 326–331.PubMedCrossRefGoogle Scholar
  28. 28.
    Schwartz, P. J., Pagani, M., Lombardi, F., Malliani, A., & Brown, A. M. (1973). A cardiocardiac sympathovagal reflex in the cat. Circulation Research, 32(2), 215–220.PubMedCrossRefGoogle Scholar
  29. 29.
    Frangos, E., Ellrich, J., & Komisaruk, B. R. (2015). Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimulation, 8(3), 624–636.PubMedCrossRefGoogle Scholar
  30. 30.
    Grassi, G., Seravalle, G., Quarti-Trevano, F., Dell'Oro, R., Arenare, F., Spaziani, D., & Mancia, G. (2009). Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension, 53(2), 205–209.PubMedCrossRefGoogle Scholar
  31. 31.
    Toschi-Dias, E., Rondon, M., Cogliati, C., Paolocci, N., Tobaldini, E., & Montano, N. (2017). Contribution of autonomic reflexes to the hyperadrenergic state in heart failure. Frontiers in Neuroscience, 11, 162.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Vasudevan, N. T., Mohan, M. L., Goswami, S. K., & Naga Prasad, S. V. (2011). Regulation of beta-adrenergic receptor function: an emphasis on receptor resensitization. Cell Cycle, 10(21), 3684–3691.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ardell, J. L., Rajendran, P. S., Nier, H. A., KenKnight, B. H., & Armour, J. A. (2015). Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function. American Journal of Physiology. Heart and Circulatory Physiology, 309(10), H1740–H1752.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Potter, E., & Marwick, T. H. (2018). Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC: Cardiovascular Imaging, 11(2 Pt 1), 260–274.PubMedGoogle Scholar
  35. 35.
    Saito, M., Khan, F., Stoklosa, T., Iannaccone, A., Negishi, K., & Marwick, T. H. (2016). Prognostic implications of LV strain risk score in asymptomatic patients with hypertensive heart disease. JACC: Cardiovascular Imaging, 9(8), 911–921.PubMedGoogle Scholar
  36. 36.
    Ho, S. Y. (2009). Anatomy and myoarchitecture of the left ventricular wall in normal and in disease. European Journal of Echocardiography, 10(8), iii3–iii7.PubMedCrossRefGoogle Scholar
  37. 37.
    Schroder, J., Hamada, S., Altiok, E., Almalla, M., Koutziampasi, C., Napp, A., Keszei, A., Hein, M., & Becker, M. (2017). Detection of acute changes in left ventricular function by myocardial deformation analysis after excessive alcohol ingestion. Journal of the American Society of Echocardiography, 30(3), 235–243 e1.PubMedCrossRefGoogle Scholar
  38. 38.
    Dedobbeleer, C., Hadefi, A., Naeije, R., & Unger, P. (2013). Left ventricular adaptation to acute hypoxia: a speckle-tracking echocardiography study. Journal of the American Society of Echocardiography, 26(7), 736–745.PubMedCrossRefGoogle Scholar
  39. 39.
    Sha, Y., Scherlag, B. J., Yu, L., Sheng, X., Jackman, W. M., Lazzara, R., & Po, S. S. (2011). Low-level right vagal stimulation: anticholinergic and antiadrenergic effects. Journal of Cardiovascular Electrophysiology, 22(10), 1147–1153.PubMedCrossRefGoogle Scholar
  40. 40.
    Chinda, K., Tsai, W. C., Chan, Y. H., Lin, A. Y., Patel, J., Zhao, Y., Tan, A. Y., Shen, M. J., Lin, H., Shen, C., Chattipakorn, N., Rubart-von der Lohe, M., Chen, L. S., Fishbein, M. C., Lin, S. F., Chen, Z., & Chen, P. S. (2016). Intermittent left cervical vagal nerve stimulation damages the stellate ganglia and reduces the ventricular rate during sustained atrial fibrillation in ambulatory dogs. Heart Rhythm, 13(3), 771–780.PubMedCrossRefGoogle Scholar
  41. 41.
    Tadic, M., Cuspidi, C., Pencic, B., Pavlovic, S. U., Ivanovic, B., Kocijancic, V., & Celic, V. (2015). Association between left ventricular mechanics and heart rate variability in untreated hypertensive patients. Journal of Clinical Hypertension (Greenwich, Conn.), 17(2), 118–125.CrossRefGoogle Scholar
  42. 42.
    Tadic, M., Zlatanovic, M., Cuspidi, C., Ivanovic, B., Stevanovic, A., Damjanov, N., Kocijancic, V., & Celic, V. (2017). The relationship between left ventricular deformation and heart rate variability in patients with systemic sclerosis: two- and three-dimensional strain analysis. International Journal of Cardiology, 236, 145–150.PubMedCrossRefGoogle Scholar
  43. 43.
    Gold, M. R., Van Veldhuisen, D. J., Hauptman, P. J., Borggrefe, M., Kubo, S. H., Lieberman, R. A., Milasinovic, G., Berman, B. J., Djordjevic, S., Neelagaru, S., Schwartz, P. J., Starling, R. C., & Mann, D. L. (2016). Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF Trial. Journal of the American College of Cardiology, 68(2), 149–158.PubMedCrossRefGoogle Scholar
  44. 44.
    Zannad, F., De Ferrari, G. M., Tuinenburg, A. E., Wright, D., Brugada, J., Butter, C., Klein, H., Stolen, C., Meyer, S., Stein, K. M., Ramuzat, A., Schubert, B., Daum, D., Neuzil, P., Botman, C., Castel, M. A., D'Onofrio, A., Solomon, S. D., Wold, N., & Ruble, S. B. (2015). Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. European Heart Journal, 36(7), 425–433.PubMedCrossRefGoogle Scholar
  45. 45.
    Premchand, R. K., Sharma, K., Mittal, S., Monteiro, R., Dixit, S., Libbus, I., DiCarlo, L. A., Ardell, J. L., Rector, T. S., Amurthur, B., KenKnight, B. H., & Anand, I. S. (2014). Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. Journal of Cardiac Failure, 20(11), 808–816.PubMedCrossRefGoogle Scholar
  46. 46.
    Ardell, J. L., Nier, H., Hammer, M., Southerland, E. M., Ardell, C. L., Beaumont, E., KenKnight, B. H., & Armour, J. A. (2017). Defining the neural fulcrum for chronic vagus nerve stimulation: implications for integrated cardiac control. The Journal of Physiology, 595(22), 6887–6903.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Salavatian, S., Beaumont, E., Longpre, J. P., Armour, J. A., Vinet, A., Jacquemet, V., Shivkumar, K., & Ardell, J. L. (2016). Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation. American Journal of Physiology. Heart and Circulatory Physiology, 311(5), H1311–H1320.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Koopman, F. A., Chavan, S. S., Miljko, S., Grazio, S., Sokolovic, S., Schuurman, P. R., Mehta, A. D., Levine, Y. A., Faltys, M., Zitnik, R., Tracey, K. J., & Tak, P. P. (2016). Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America, 113(29), 8284–8289.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Liu, J. H., Chen, Y., Yuen, M., Zhen, Z., Chan, C. W., Lam, K. S., Tse, H. F., & Yiu, K. H. (2016). Incremental prognostic value of global longitudinal strain in patients with type 2 diabetes mellitus. Cardiovascular Diabetology, 15, 22.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations