Skip to main content
Log in

Serum Exosomes Attenuate H2O2-Induced Apoptosis in Rat H9C2 Cardiomyocytes via ERK1/2

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Exosomes are small-sized vesicles that can be released from cells into the serum. Exosomes play important roles in regulating many biological processes including cell proliferation, apoptosis, cell cycle, and metabolism. However, the roles and mechanisms of plasma exosomes in the apoptosis of rat H9C2 cardiomyocytes are largely unknown. In this study, we isolated plasma exosomes as confirmed by the marker protein CD63. Using flow cytometry and western blot analysis, we found that exosomes attenuated hydrogen peroxide (H2O2)-induced apoptosis and improved survival of rat H9C2 cardiomyocytes. Furthermore, the anti-apoptosis effects of serum exosomes in rat H9C2 cardiomyocytes were mediated by the activation of ERK1/2 signaling pathway. These data indicated that plasma exosomes had the protective effects against cardiomyocyte apoptosis and might be a novel therapy strategy for myocardial injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Orogo, A. M., & Gustafsson, A. B. (2013). Cell death in the myocardium: my heart won’t go on. IUBMB Life, 65(8), 651–656. https://doi.org/10.1002/iub.1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Olivetti, G., Abbi, R., Quaini, F., Kajstura, J., Cheng, W., Nitahara, J. A., et al. (1997). Apoptosis in the failing human heart. The New England Journal of Medicine, 336(16), 1131–1141. https://doi.org/10.1056/NEJM199704173361603

    Article  CAS  PubMed  Google Scholar 

  3. Lefer, D. J., & Granger, D. N. (2000). Oxidative stress and cardiac disease. The American Journal of Medicine, 109(4), 315–323.

    Article  CAS  Google Scholar 

  4. Agarwal, U., George, A., Bhutani, S., Ghosh-Choudhary, S., Maxwell, J. T., Brown, M. E., et al. (2017). Experimental, systems, and computational approaches to understanding the microRNA-mediated reparative potential of cardiac progenitor cell-derived exosomes from pediatric patients. Circulation Research, 120(4), 701–712. https://doi.org/10.1161/CIRCRESAHA.116.309935.

    Article  CAS  PubMed  Google Scholar 

  5. Angelini, F., Ionta, V., Rossi, F., Pagano, F., Chimenti, I., Messina, E., et al. (2016). Exosomes isolation protocols: facts and artifacts for cardiac regeneration. Frontiers in Bioscience (Scholar Edition), 8, 303–311.

    Article  Google Scholar 

  6. Kishore, R., & Khan, M. (2017). Cardiac cell-derived exosomes: changing face of regenerative biology. European Heart Journal, 38(3), 212–215. https://doi.org/10.1093/eurheartj/ehw324

    Article  PubMed  Google Scholar 

  7. Singla, D. K. (2016). Stem cells and exosomes in cardiac repair. Current Opinion in Pharmacology, 27, 19–23. https://doi.org/10.1016/j.coph.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  8. Song, J., Chen, X., Wang, M., Xing, Y., Zheng, Z., & Hu, S. (2014). Cardiac endothelial cell-derived exosomes induce specific regulatory B cells. Scientific Reports, 4, 7583. https://doi.org/10.1038/srep07583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, C., Zhang, C., Liu, L., A, X., Chen, B., Li, Y., et al. (2017). Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Molecular Therapy, 25(1), 192–204. https://doi.org/10.1016/j.ymthe.2016.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, Z., Yang, J., Yan, W., Li, Y., Shen, Z., & Asahara, T. (2016). Pretreatment of cardiac stem cells with exosomes derived from mesenchymal stem cells enhances myocardial repair. Journal of the American Heart Association, 5(1). https://doi.org/10.1161/JAHA.115.002856.

  11. Khalyfa, A., & Gozal, D. (2014). Exosomal miRNAs as potential biomarkers of cardiovascular risk in children. Journal of Translational Medicine, 12, 162. https://doi.org/10.1186/1479-5876-12-162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Owens 3rd, A. P., & Mackman, N. (2011). Microparticles in hemostasis and thrombosis. Circulation Research, 108(10), 1284–1297. https://doi.org/10.1161/CIRCRESAHA.110.233056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Loyer, X., Vion, A. C., Tedgui, A., & Boulanger, C. M. (2014). Microvesicles as cell-cell messengers in cardiovascular diseases. Circulation Research, 114(2), 345–353. https://doi.org/10.1161/CIRCRESAHA.113.300858

    Article  CAS  PubMed  Google Scholar 

  14. de Jong, O. G., Verhaar, M. C., Chen, Y., Vader, P., Gremmels, H., Posthuma, G., et al. (2012). Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. Journal of Extracellular Vesicles, 1. https://doi.org/10.3402/jev.v1i0.18396.

  15. Li, C., Pei, F., Zhu, X., Duan, D. D., & Zeng, C. (2012). Circulating microRNAs as novel and sensitive biomarkers of acute myocardial infarction. Clinical Biochemistry, 45(10–11), 727–732. https://doi.org/10.1016/j.clinbiochem.2012.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuwabara, Y., Ono, K., Horie, T., Nishi, H., Nagao, K., Kinoshita, M., et al. (2011). Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circulation. Cardiovascular Genetics, 4(4), 446–454. https://doi.org/10.1161/CIRCGENETICS.110.958975

    Article  CAS  PubMed  Google Scholar 

  17. D'Alessandra, Y., Devanna, P., Limana, F., Straino, S., Di Carlo, A., Brambilla, P. G., et al. (2010). Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. European Heart Journal, 31(22), 2765–2773. https://doi.org/10.1093/eurheartj/ehq167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng, Y., Wang, X., Yang, J., Duan, X., Yao, Y., Shi, X., et al. (2012). A translational study of urine miRNAs in acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 53(5), 668–676. https://doi.org/10.1016/j.yjmcc.2012.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bi, S., Wang, C., Jin, Y., Lv, Z., Xing, X., & Lu, Q. (2015). Correlation between serum exosome derived miR-208a and acute coronary syndrome. International Journal of Clinical and Experimental Medicine, 8(3), 4275–4280.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Goren, Y., Kushnir, M., Zafrir, B., Tabak, S., Lewis, B. S., & Amir, O. (2012). Serum levels of microRNAs in patients with heart failure. European Journal of Heart Failure, 14(2), 147–154. https://doi.org/10.1093/eurjhf/hfr155

    Article  CAS  PubMed  Google Scholar 

  21. Cheow, E. S., Cheng, W. C., Lee, C. N., de Kleijn, D., Sorokin, V., & Sze, S. K. (2016). Plasma-derived extracellular vesicles contain predictive biomarkers and potential therapeutic targets for myocardial ischemic (MI) injury. Molecular & Cellular Proteomics, 15(8), 2628–2640. https://doi.org/10.1074/mcp.M115.055731

    Article  CAS  Google Scholar 

  22. Vicencio, J. M., Yellon, D. M., Sivaraman, V., Das, D., Boi-Doku, C., Arjun, S., et al. (2015). Plasma exosomes protect the myocardium from ischemia-reperfusion injury. Journal of the American College of Cardiology, 65(15), 1525–1536. https://doi.org/10.1016/j.jacc.2015.02.026

    Article  CAS  PubMed  Google Scholar 

  23. Milerova, M., Charvatova, Z., Skarka, L., Ostadalova, I., Drahota, Z., Fialova, M., et al. (2010). Neonatal cardiac mitochondria and ischemia/reperfusion injury. Molecular and Cellular Biochemistry, 335(1–2), 147–153. https://doi.org/10.1007/s11010-009-0251-x

    Article  CAS  PubMed  Google Scholar 

  24. Abas, L., Bogoyevitch, M. A., & Guppy, M. (2000). Mitochondrial ATP production is necessary for activation of the extracellular-signal-regulated kinases during ischaemia/reperfusion in rat myocyte-derived H9c2 cells. The Biochemical Journal, 349(Pt 1), 119–126.

    Article  CAS  Google Scholar 

  25. Muscari, C., Gamberini, C., Bonafe, F., Giordano, E., Bianchi, C., Lenaz, G., et al. (2004). Evaluation of cellular energetics by the Pasteur effect in intact cardiomyoblasts and isolated perfused hearts. Molecular and Cellular Biochemistry, 258(1–2), 91–97.

    Article  CAS  Google Scholar 

  26. Kuznetsov, A. V., Javadov, S., Sickinger, S., Frotschnig, S., & Grimm, M. (2015). H9c2 and HL-1 cells demonstrate distinct features of energy metabolism, mitochondrial function and sensitivity to hypoxia-reoxygenation. Biochimica et Biophysica Acta, 1853(2), 276–284. https://doi.org/10.1016/j.bbamcr.2014.11.015

    Article  CAS  PubMed  Google Scholar 

  27. Bienert, G. P., Schjoerring, J. K., & Jahn, T. P. (2006). Membrane transport of hydrogen peroxide. Biochimica et Biophysica Acta, 1758(8), 994–1003. https://doi.org/10.1016/j.bbamem.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  28. Han, H., Long, H., Wang, H., Wang, J., Zhang, Y., & Wang, Z. (2004). Progressive apoptotic cell death triggered by transient oxidative insult in H9c2 rat ventricular cells: a novel pattern of apoptosis and the mechanisms. American Journal of Physiology. Heart and Circulatory Physiology, 286(6), H2169–H2182. https://doi.org/10.1152/ajpheart.00199.2003

    Article  CAS  PubMed  Google Scholar 

  29. Ma, J., Zhao, Y., Sun, L., Sun, X., Zhao, X., Sun, X., et al. (2017). Exosomes derived from Akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Translational Medicine, 6(1), 51–59. https://doi.org/10.5966/sctm.2016-0038

    Article  CAS  PubMed  Google Scholar 

  30. Morelli, A. E. (2006). The immune regulatory effect of apoptotic cells and exosomes on dendritic cells: its impact on transplantation. American Journal of Transplantation, 6(2), 254–261. https://doi.org/10.1111/j.1600-6143.2005.01197.x

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Y., Zhang, L., Li, Y., Chen, L., Wang, X., Guo, W., et al. (2015). Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. International Journal of Cardiology, 192, 61–69. https://doi.org/10.1016/j.ijcard.2015.05.020

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xiao, J., Pan, Y., Li, X. H., Yang, X. Y., Feng, Y. L., Tan, H. H., et al. (2016). Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death & Disease, 7(6), e2277. https://doi.org/10.1038/cddis.2016.181

    Article  CAS  Google Scholar 

  33. Yu, B., Kim, H. W., Gong, M., Wang, J., Millard, R. W., Wang, Y., et al. (2015). Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. International Journal of Cardiology, 182, 349–360. https://doi.org/10.1016/j.ijcard.2014.12.043

    Article  PubMed  Google Scholar 

  34. Bei, Y., Xu, T., Lv, D., Yu, P., Xu, J., Che, L., et al. (2017). Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury. Basic Research in Cardiology, 112(4), 38. https://doi.org/10.1007/s00395-017-0628-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liang, Y., & Sahoo, S. (2015). Exosomes explosion for cardiac resuscitation. Journal of the American College of Cardiology, 66(6), 612–615. https://doi.org/10.1016/j.jacc.2015.06.1302

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tong, Z., Jiang, B., Wu, Y., Liu, Y., Li, Y., Gao, M., et al. (2015). MiR-21 protected cardiomyocytes against doxorubicin-induced apoptosis by targeting BTG2. International Journal of Molecular Sciences, 16(7), 14511–14525. https://doi.org/10.3390/ijms160714511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peche, H., Renaudin, K., Beriou, G., Merieau, E., Amigorena, S., & Cuturi, M. C. (2006). Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. American Journal of Transplantation, 6(7), 1541–1550. https://doi.org/10.1111/j.1600-6143.2006.01344.x

    Article  CAS  PubMed  Google Scholar 

  38. Pironti, G., Strachan, R. T., Abraham, D., Mon-Wei Yu, S., Chen, M., Chen, W., et al. (2015). Circulating exosomes induced by cardiac pressure overload contain functional angiotensin II type 1 receptors. Circulation, 131(24), 2120–2130. https://doi.org/10.1161/CIRCULATIONAHA.115.015687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Prathipati, P., Nandi, S. S., & Mishra, P. K. (2017). Stem cell-derived exosomes, autophagy, extracellular matrix turnover, and miRNAs in cardiac regeneration during stem cell therapy. Stem Cell Reviews, 13(1), 79–91. https://doi.org/10.1007/s12015-016-9696-y

    Article  CAS  PubMed Central  Google Scholar 

  40. Emanueli, C., Shearn, A. I., Laftah, A., Fiorentino, F., Reeves, B. C., Beltrami, C., et al. (2016). Coronary artery-bypass-graft surgery increases the plasma concentration of exosomes carrying a cargo of cardiac microRNAs: an example of exosome trafficking out of the human heart with potential for cardiac biomarker discovery. PLoS One, 11(4), e0154274. https://doi.org/10.1371/journal.pone.0154274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Looze, C., Yui, D., Leung, L., Ingham, M., Kaler, M., Yao, X., et al. (2009). Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein. Biochemical and Biophysical Research Communications, 378(3), 433–438. https://doi.org/10.1016/j.bbrc.2008.11.050

    Article  CAS  PubMed  Google Scholar 

  42. Moldovan, L., Batte, K., Wang, Y., Wisler, J., & Piper, M. (2013). Analyzing the circulating microRNAs in exosomes/extracellular vesicles from serum or plasma by qRT-PCR. Methods in Molecular Biology, 1024, 129–145. https://doi.org/10.1007/978-1-62703-453-1_10

    Article  CAS  PubMed  Google Scholar 

  43. Ye, W., Tang, X., Yang, Z., Liu, C., Zhang, X., Jin, J., et al. (2017). Plasma-derived exosomes contribute to inflammation via the TLR9-NF-kappaB pathway in chronic heart failure patients. Molecular Immunology, 87, 114–121. https://doi.org/10.1016/j.molimm.2017.03.011

    Article  CAS  PubMed  Google Scholar 

  44. Chen, M., Zsengeller, Z., Xiao, C. Y., & Szabo, C. (2004). Mitochondrial-to-nuclear translocation of apoptosis-inducing factor in cardiac myocytes during oxidant stress: potential role of poly(ADP-ribose) polymerase-1. Cardiovascular Research, 63(4), 682–688. https://doi.org/10.1016/j.cardiores.2004.04.018

    Article  CAS  PubMed  Google Scholar 

  45. Chen, Z., Ge, Y., & Kang, J. X. (2004). Down-regulation of the M6P/IGF-II receptor increases cell proliferation and reduces apoptosis in neonatal rat cardiac myocytes. BMC Cell Biology, 5, 15. https://doi.org/10.1186/1471-2121-5-15

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kunapuli, S., Rosanio, S., & Schwarz, E. R. (2006). “How do cardiomyocytes die?” apoptosis and autophagic cell death in cardiac myocytes. Journal of Cardiac Failure, 12(5), 381–391. https://doi.org/10.1016/j.cardfail.2006.02.002

    Article  CAS  PubMed  Google Scholar 

  47. Pei, Z. H., Chen, B. Y., Tie, R., Zhang, H. F., Zhao, G., Qu, P., et al. (2011). Infrasound exposure induces apoptosis of rat cardiac myocytes by regulating the expression of apoptosis-related proteins. Cardiovascular Toxicology, 11(4), 341–346. https://doi.org/10.1007/s12012-011-9126-y

    Article  CAS  PubMed  Google Scholar 

  48. Yang, Y., Li, C., Xiang, X., Dai, Z., Chang, J., Zhang, M., et al. (2014). Ursolic acid prevents endoplasmic reticulum stress-mediated apoptosis induced by heat stress in mouse cardiac myocytes. Journal of Molecular and Cellular Cardiology, 67, 103–111. https://doi.org/10.1016/j.yjmcc.2013.12.018

    Article  CAS  PubMed  Google Scholar 

  49. Li, C., Tian, J., Li, G., Jiang, W., Xing, Y., Hou, J., et al. (2010). Asperosaponin VI protects cardiac myocytes from hypoxia-induced apoptosis via activation of the PI3K/Akt and CREB pathways. European Journal of Pharmacology, 649(1–3), 100–107. https://doi.org/10.1016/j.ejphar.2010.08.060

    Article  CAS  PubMed  Google Scholar 

  50. Ling, S., Luo, R., Dai, A., Guo, Z., Guo, R., & Komesaroff, P. A. (2009). A pharmaceutical preparation of Salvia miltiorrhiza protects cardiac myocytes from tumor necrosis factor-induced apoptosis and reduces angiotensin II-stimulated collagen synthesis in fibroblasts. Phytomedicine, 16(1), 56–64. https://doi.org/10.1016/j.phymed.2008.09.008

    Article  PubMed  Google Scholar 

  51. Townsend, P. A., Scarabelli, T. M., Pasini, E., Gitti, G., Menegazzi, M., Suzuki, H., et al. (2004). Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis. FASEB Journal, 18(13), 1621–1623. https://doi.org/10.1096/fj.04-1716fje

    Article  CAS  PubMed  Google Scholar 

  52. Das, A., Salloum, F. N., Xi, L., Rao, Y. J., & Kukreja, R. C. (2009). ERK phosphorylation mediates sildenafil-induced myocardial protection against ischemia-reperfusion injury in mice. American Journal of Physiology: Heart and Circulatory Physiology, 296(5), H1236–H1243. https://doi.org/10.1152/ajpheart.00100.2009

    Article  CAS  PubMed  Google Scholar 

  53. Das, A., Xi, L., & Kukreja, R. C. (2008). Protein kinase G-dependent cardioprotective mechanism of phosphodiesterase-5 inhibition involves phosphorylation of ERK and GSK3beta. Journal of Biological Chemistry, 283(43), 29572–29585. https://doi.org/10.1074/jbc.M801547200

    Article  CAS  PubMed  Google Scholar 

  54. Fryer, R. M., Hsu, A. K., & Gross, G. J. (2001). ERK and p38 MAP kinase activation are components of opioid-induced delayed cardioprotection. Basic Research in Cardiology, 96(2), 136–142.

    Article  CAS  Google Scholar 

  55. Hu, Y., Chen, X., Pan, T. T., Neo, K. L., Lee, S. W., Khin, E. S., et al. (2008). Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways. Pflügers Archiv European Journal of Physiology, 455(4), 607–616. https://doi.org/10.1007/s00424-007-0321-4

    Article  CAS  PubMed  Google Scholar 

  56. Naitoh, K., Ichikawa, Y., Miura, T., Nakamura, Y., Miki, T., Ikeda, Y., et al. (2006). MitoKATP channel activation suppresses gap junction permeability in the ischemic myocardium by an ERK-dependent mechanism. Cardiovascular Research, 70(2), 374–383. https://doi.org/10.1016/j.cardiores.2006.01.023

    Article  CAS  PubMed  Google Scholar 

  57. Ottani, A., Galantucci, M., Ardimento, E., Neri, L., Canalini, F., Calevro, A., et al. (2013). Modulation of the JAK/ERK/STAT signaling in melanocortin-induced inhibition of local and systemic responses to myocardial ischemia/reperfusion. Pharmacological Research, 72, 1–8. https://doi.org/10.1016/j.phrs.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  58. Thomas, C. J., Lim, N. R., Kedikaetswe, A., Yeap, Y. Y., Woodman, O. L., Ng, D. C., et al. (2015). Evidence that the MEK/ERK but not the PI3K/Akt pathway is required for protection from myocardial ischemia-reperfusion injury by 3′,4′-dihydroxyflavonol. European Journal of Pharmacology, 758, 53–59. https://doi.org/10.1016/j.ejphar.2015.03.054

    Article  CAS  PubMed  Google Scholar 

  59. Filippone, S. M., Samidurai, A., Roh, S. K., Cain, C. K., He, J., Salloum, F. N., et al. (2017). Reperfusion therapy with rapamycin attenuates myocardial infarction through activation of AKT and ERK. Oxidative Medicine and Cellular Longevity, 2017, 4619720. https://doi.org/10.1155/2017/4619720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vivar, R., Humeres, C., Varela, M., Ayala, P., Guzman, N., Olmedo, I., et al. (2012). Cardiac fibroblast death by ischemia/reperfusion is partially inhibited by IGF-1 through both PI3K/Akt and MEK-ERK pathways. Experimental and Molecular Pathology, 93, 1), 1–1), 7. https://doi.org/10.1016/j.yexmp.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  61. Wu, X., Xu, T., Li, D., Zhu, S., Chen, Q., Hu, W., et al. (2013). ERK/PP1a/PLB/SERCA2a and JNK pathways are involved in luteolin-mediated protection of rat hearts and cardiomyocytes following ischemia/reperfusion. PLoS One, 8(12), e82957. https://doi.org/10.1371/journal.pone.0082957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, J., Bian, H. J., Li, X. X., Liu, X. B., Sun, J. P., Li, N., et al. (2010). ERK-MAPK signaling opposes rho-kinase to reduce cardiomyocyte apoptosis in heart ischemic preconditioning. Molecular Medicine, 16(7–8), 307–315. https://doi.org/10.2119/molmed.2009.00121.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the grants from the CAMS Innovation Fund for Medical Sciences (CIFMS, 2016-12M-1-006), National Natural Science Foundation of China (81700228 to Y Xie, 81570332 to L Zhou) and the grant from Jiangsu Province’s Key Provincial Talents Program (ZDRCA2016019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhua Yao or Lei Zhou.

Ethics declarations

All human investigations conformed to the principles outlined in the Declaration of Helsinki and were approved by the institutional review committees of Nanjing Medical School. All participants provided written informed consent when they were enrolled in this study.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Liu, Z., Xie, Y. et al. Serum Exosomes Attenuate H2O2-Induced Apoptosis in Rat H9C2 Cardiomyocytes via ERK1/2. J. of Cardiovasc. Trans. Res. 12, 37–44 (2019). https://doi.org/10.1007/s12265-018-9791-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-018-9791-3

Keywords

Navigation