Advertisement

Right Ventricular Pacing, Mechanical Dyssynchrony, and Heart Failure

  • 639 Accesses

  • 12 Citations

Abstract

Cardiac pacing is a common treatment option for patients with sick sinus syndrome or atrioventricular block, with the ventricular pacing lead often secured in the convenient right ventricular (RV) apical location. While RV pacing reduces symptoms and limitations associated with heart block, it may have detrimental effects on cardiac structure and function, leading to heart failure (HF) in some patients. RV pacing creates electrical dyssynchrony similar to a left-bundle branch block, with conduction occurring cell-by-cell rather than through the His–Purkinje network. Studies have shown that impairment of myocardial metabolism, structure, and function related to RV pacing occurs regionally (most prominently near the pacing site) and globally, within the left ventricle. Strategies being studied to prevent or treat pacing-induced intraventricular mechanical dyssynchrony and HF include: initial biventricular rather than RV pacing in selected patients, programming to avoid or minimize RV pacing, use of alternate (non-apical) RV pacing sites, echocardiographic screening for development of pacing-induced dyssynchrony and HF, and upgrade to biventricular pacing.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Lamas, G. A., Lee, K. L., Sweeney, M. O., Silverman, R., et al. (2002). Ventricular pacing or dual-chamber pacing for sinus-node dysfunction. The New England Journal of Medicine, 346, 1854–1862.

  2. 2.

    Birnie, D., Williams, K., Guo, A., Mielniczuk, L., Davis, D., Lemery, R., et al. (2006). Reasons for escalating pacemaker implants. The American Journal of Cardiology, 98, 93–97.

  3. 3.

    Gammage, M., Schofield, S., Rankin, I., Bennett, M., Coles, P., & Pentecost, B. (1991). Benefit of single setting rate responsive ventricular pacing compared with fixed rate demand pacing in elderly patients. Pacing and Clinical Electrophysiology, 14, 147–180.

  4. 4.

    Lamas, G. A., Pashos, C. L., Normand, S. L. T., & McNeil, B. (1995). Permanent pacemaker selection and subsequent survival in elderly Medicare pacemaker recipients. Circulation, 91, 1063–1069.

  5. 5.

    Sweeney, M. O., Bank, A. J., Nsah, E., Koullick, M., Zeng, Q. C., Hettrick, D., et al. (2007). Minimizing ventricular pacing to reduce atrial fibrillation in sinus node disease. The New England Journal of Medicine, 357, 1000–1008.

  6. 6.

    Wilkoff, B. L., Cook, J. R., Epstein, A. E., Greene, L., Hallstrom, A. P., Hsia, H., et al. (2002). Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator. The dual chamber and VVI implantable defibrillator (DAVID) trial. Journal of the American Medical Association, 288, 3115–3123.

  7. 7.

    Sharma, A. D., Rizo-Patron, C., Hallstrom, A. P., O’Neill, G. P., et al. (2005). Percent right ventricular pacing predicts outcomes in the DAVID trial. Heart Rhythm, 2, 830–834.

  8. 8.

    Moss, A. J., Zareba, W., Hall, W. J., Klein, H., et al. (2002). Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. The New England Journal of Medicine, 346, 877–883.

  9. 9.

    Steinberg, J. S., Fischer, A., Wang, P., Schuger, C., Daubert, J., et al. (2005). The clinical implications of cumulative right ventricular pacing in the Multicenter Automatic Defribrillator Trial II. Journal of Cardiovascular Electrophysiology, 16, 359–365.

  10. 10.

    Sweeney, M. O., Hellkamp, A. S., Ellenbogen, K. A., Greenspon, A. J., Freedman, R. A., Lee, K. L., et al. (2003). Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation, 107, 2932–2937.

  11. 11.

    Myerburg, R. J., Nilsson, K., & Gelband, H. (1972). Physiology of canine intraventricular conduction and endocardial excitation. Circulation Research, 30, 217–243.

  12. 12.

    Scher, A. M., Young, A. C., Malmghen, A. L., & Paton, R. R. (1953). Spread of electrical activity through the wall of the ventricle. Circulation Research, 1, 539–547.

  13. 13.

    Scher, A. M., Young, A. C., Malmgren, A. L., & Erickson, R. V. (1955). Activation of the interventricular septum. Circulation Research, 3, 56–64.

  14. 14.

    Vassollo, J. A., Cassidy, D. M., Marchlinski, F. E., Buxton, A. E., Waxman, H. L., Doherty, J. U., et al. (1984). Endocardial activation of left bundle branch block. Circulation, 69, 914–923.

  15. 15.

    Rosenbush, S. W., Ruggie, N., Turner, D. A., Von Behren, P. L., Denes, P., Fordham, E. W., et al. (1982). Sequence and timing of ventricular wall motion in patients with bundle branch block. Assessment by radionuclide cineangiography. Circulation, 66, 1113–1119.

  16. 16.

    Bank, A. J., & Kelly, A. S. (2006). Tissue Doppler imaging and left ventricular dyssynchrony in heart failure. Journal of Cardiac Failure 12;2:154–162.

  17. 17.

    Bank, A. J., Burns, K. V., & Gage, R. M. (2010). Heart failure and cardiac resynchronization therapy. US Cardiology 7;1:24–32.

  18. 18.

    Yu, C. M., Bax, J. J., & Gorcsan, J., III. (2008). Critical appraisal of methods to assess mechanical dyssynchrony. Current Opinion in Cardiology, 24, 18–28.

  19. 19.

    Ishikawa, T. (2011). Limitaions and problems of assessment of mechanical dyssynchrony in determining cardiac resynchronization therapy indication: Is assessment of mechanical dyssynchrony necessary in determining CRT indication? (Con). Circulation Journal, 75, 465–471.

  20. 20.

    Prinzen, F. W., Hunter, W. C., Wyman, B. T., & McVeigh, E. R. (1999). Mapping of regional myocardial strain and work during ventricular pacing: Experimental study using magnetic resonance imaging tagging. Journal of the American College of Cardiology, 33, 1735–1742.

  21. 21.

    Prinzen, F. W., & Peschar, M. (2002). Relation between the pacing induced sequence of activation and left ventricular pump function in animals. Pacing and Clinical Electrophysiology, 25(Pt 1), 484–498.

  22. 22.

    Prinzen, F. W., Augustijn, C. H., Arts, T., Allessie, M. A., & Reneman, R. S. (1990). Redistribution of myocardial fiber strain and blood flow by asynchronous activation. American Journal of Physiology, 259, H300–H308.

  23. 23.

    Delhaas, T., Arts, T., Prinzen, F. W., & Reneman, R. S. (1994). Regional fibre stress-fibre strain area an estimate of regional blood flow and oxygen demand in the canine heart. The Journal of Physiology, 477, 481–496.

  24. 24.

    Delgado, V., Tops, L. F., Trines, S. A., Zeppenfeld, K., et al. (2009). Acute effects of right ventricular and apical pacing on left ventricular synchrony and mechanics. Circulation: Arrhythmia and Electrophysiology, 2, 135–145.

  25. 25.

    Liu, W. H., Chen, M. C., Chen, Y. L., Guo, B. F., et al. (2008). Right ventricular apical pacing acutely impairs left ventricular function and induces mechanical dyssynchrony in patients with sick sinus syndrome: A real-time three-dimensional echocardiographic study. Journal of the American Society of Echocardiography, 21(3), 224–229.

  26. 26.

    Nahlawi, M., Waligora, M., Spies, S., Bonow, R., et al. (2004). Left ventricular function during and after right ventricular pacing. Journal of the American College of Cardiology, 44, 1883–1888.

  27. 27.

    Bank, A. J., Schwartzman, D. S., Burns, K. V., Kaufman, C. L., Adler, S. W., Kelly, A. S., et al. (2010). Intramural dyssynchrony from acute right ventricular apical pacing in human subjects with normal left ventricular function. Journal of Cardiovascular Transaction Research, 3, 321–329.

  28. 28.

    Fang, F., Chan, J. Y. S., Yip, G. W. K., Xie, J. M., Zhang, Q., Fung, J. W. H., et al. (2010). Prevalence and determinants of left ventricular systolic dyssynchrony in patients with normal ejection fraction received right ventricular apical pacing: A real-time three-dimensional echocardiographic study. European Journal of Echocardiography, 11, 109–118.

  29. 29.

    Zhang, X. H., Chen, H., Siu, C. W., Yiu, K. H., et al. (2008). New-onset heart failure after permanent right ventricular apical pacing in patients with acquired high-grade atrioventricular block and normal left ventricular function. Journal of Cardiovascular Electrophysiology, 19, 136–141.

  30. 30.

    Tse, H. F., & Lau, C. P. (1997). Long-term effect of right ventricular pacing on myocardial perfusion and function. Journal of the American College of Cardiology, 29, 744–749.

  31. 31.

    Tops, L. F., Suffoletto, M. S., Bleeker, G. B., Boersma, E., van der Wall, E. E., Gorcsan, J., et al. (2007). Speckle-tracking radial strain reveals left ventricular dyssynchrony in patients with permanent right ventricular pacing. Journal of the American College of Cardiology, 50, 1180–1188.

  32. 32.

    Bank, A. J., Kaufman, C. L., Burns, K. V., Parah, J. S., Johnson, L., Kelly, A. S., et al. (2010). Intramural dyssynchrony and response to cardiac resynchronization therapy in patients with and without previous right ventricular pacing. European Journal of Heart Failure, 12, 1317–1324.

  33. 33.

    Ng, A. C. T., Allman, C., Vidaic, J., Tie, H., Hopkins, A. P., & Leung, D. Y. (2009). Long-term impact of right ventricular septal versus apical pacing on left ventricular synchrony and function in patients with second- or third-degree heart block. The American Journal of Cardiology, 103, 1096–1101.

  34. 34.

    Burns, K. V., Kaufman, C. L., Kelly, A. S., Parah, J. S., Dengel, D. R., & Bank, A. J. (2011). Torsion and dyssynchrony differences between chronically paced and non-paced heart failure patients. Journal of Cardiac Failure, 17, 495–502.

  35. 35.

    Grines, C. L., Bashore, T. M., Boudoulas, H., Olson, S., Shafer, P., & Wooley, C. F. (1989). Functional abnormalities in isolated left bundle branch block. The effect of interventricular asynchrony. Circulation, 79, 845–853.

  36. 36.

    Kindermann, M., Hennen, B., Jung, J., Geisel, J., Bohm, M., & Frohlig, G. (2006). Biventricular versus conventional right ventricular stimulation for patients with standard pacing indication and left ventricular dysfunction. The Homburg biventricular pacing evaluation (HOBIPACE). Journal of the American College of Cardiology, 47, 1927–1937.

  37. 37.

    Doshi, R. N., Daoud, E. G., Fellows, C., Turk, K., Duran, A., Hamdan, M. H., et al. (2005). Left ventricular-based cardiac stimulation post AV nodal ablation evaluation (The PAVE Study). Journal of Cardiovascular Electrophysiology, 16, 1160–1165.

  38. 38.

    Leclercq, C., Walker, S., Linde, C., Clementy, J., et al. (2002). Comparative effects of permanent biventricular and right-univentricular pacing in heart failure patients with chronic atrial fibrillation. European Heart Journal, 23, 1780–1787.

  39. 39.

    Brignole, M., Gammage, M., Puggioni, E., Alboni, P., et al. (2005). Comparative assessment of right, left, and biventricular pacing in patients with permanent atrial fibrillation. European Heart Journal, 26, 712–722.

  40. 40.

    Yu, C. M., Chan, J. Y. S., Zhang, Q., Omar, R., et al. (2009). Biventricular pacing in patients with bradycardia and normal ejection fraction. The New England Journal of Medicine, 361, 2123–2134.

  41. 41.

    Chan, J. Y. S., Fang, F., Zhang, Q., Fung, J. W. H., Razali, O., et al. (2011). Biventricular pacing is superior to right ventricular pacing in bradycardia patients with preserved systolic function: 2-year results of the PACE trial. European Heart Journal, 32, 2533–2540.

  42. 42.

    Brignole, M., Botto, G., Mont, L., Iacopino, S., et al. (2011). Cardiac resynchronization therapy in patients undergoing atrioventricular junction ablation for permanent atrial fibrillation: A randomized trial. European Heart Journal Advance Access May 23, 2011.

  43. 43.

    Stockburger, M., Gomez-Doblas, J. J., Lamas, G., Alzueta, J., et al. (2011). Preventing ventricular dysfunction in pacemaker patients without advanced heart failure: Results from a multicentre international randomized trial (PREVENT-HF). European Journal of Heart Failure, 13, 633–641.

  44. 44.

    Bradley, D. J., & Shen, W. K. (2007). Atrioventricular junction ablation combined with either right ventricular pacing or cardiac resynchronization therapy for atrial fibrillation: The need for large-scale randomized trials. Heart Rhythm, 4, 224–232.

  45. 45.

    Pastore, G., Noventa, F., Piovesana, P., Cazzin, R., et al. (2008). Left ventricular dyssynchrony resulting from right ventricular apical pacing: Relevance of baseline assessment. Pacing and Clinical Electrophysiology, 31, 1456–1462.

  46. 46.

    Olshansky, B., Day, J. D., Moore, S., Gering, L., Rosenbaum, M., McGuire, M., et al. (2007). Is dual-chamber programming inferior to single-chamber programming in an implantable cardioverter-defibrillator? Results of the INTRINSIC RV (Inhibition of unnecessary RV pacing with AVSH in ICDs) study. Circulation, 115, 9–16.

  47. 47.

    Olshansky, B., Day, J. D., Lerew, D. R., Brown, S., & Stolen, K. Q. (2007). Eliminating right ventricular pacing may not be the best for patients requiring implantable cardioverter–defribrillators. Heart Rhythm, 4, 886–891.

  48. 48.

    Yamano, T., Kubo, T., Takarada, S., Ishibashi, K., et al. (2010). Advantage of right ventricular outflow tract pacing on cardiac function and coronary circulation in comparison with right ventricular apex pacing. Journal of the American Society of Echocardiography, 23, 1177–1182.

  49. 49.

    Leong, D. P., Mitchell, A. M., Salna, I., Brooks, A. G., et al. (2010). Long-term mechanical consequences of permanent right ventricular pacing: Effect of pacing site. Journal of Cardiovascular Electrophysiology, 21, 1120–1126.

  50. 50.

    Tse, H. F., Yu, C., Wong, K. K., Tsang, V., Leung, Y. L., Ho, W. Y., et al. (2002). Functional abnormalities in patients with permanent right ventricular pacing. Journal of the American College of Cardiology, 40, 1451–1458.

  51. 51.

    Victor, F., Leclercq, C., Mabo, P., Pavin, D., et al. (1999). Optimal right ventricular pacing site in chronically implanted patients. Journal of the American College of Cardiology, 33, 311–316.

  52. 52.

    Stambler, B. S., Ellenbogen, K. A., Zhang, X., Porter, T. R., et al. (2003). Right ventricular outflow versus apical pacing in pacemaker patients with congestive heart failure and atrial fibrillation. Journal of Cardiovascular Electrophysiology, 14, 1180–1186.

  53. 53.

    Dabrowska-Kugacka, A., Lewicka-Nowak, E., Tybura, S., Wilczek, R., et al. (2009). Survival analysis in patients with preserved left ventricular function and standard indications for permanent cardiac pacing randomized to right ventricular apical or septal outflow tract pacing. Circulation Journal, 73, 1812–1819.

  54. 54.

    Gong, X., Su, Y., Pan, W., Cui, J., Liu, S., & Shu, X. (2009). Is right ventricular outflow tract pacing superior to right ventricular apex pacing in patients with normal cardiac function? Clinical Cardiology, 32, 695–699.

  55. 55.

    Schwaab, B., Frohlig, G., Alexander, C., Kindermann, M., Hellwig, N., Schwerdt, H., et al. (1999). Influence of right ventricular stimulation site on left ventricular function in atrial synchronous ventricular pacing. Journal of the American College of Cardiology, 33, 317–323.

  56. 56.

    Inoue, K., Okayama, H., Nishimura, K., Ogimoto, A., et al. (2010). Right ventricular pacing from the septum avoids the acute exacerbation in left ventricular dyssynchrony and torsional behavior seen with pacing from the apex. Journal of the American Society of Echocardiography, 23, 195–200.

  57. 57.

    Inoue, K., Okayama, H., Nishimura, K., Saito, M., et al. (2011). Right ventricular septal pacing preserves global left ventricular longitudinal function in comparison with apical pacing. Circulation Journal, 75(7), 1609–1615.

  58. 58.

    Cano, O., Osca, J., Sancho-Tello, M. J., Sanchez, J. M., et al. (2010). Comparison of effectiveness of right ventricular septal pacing versus right ventricular apical pacing. The American Journal of Cardiology, 105, 1426–1432.

  59. 59.

    Cho, G. Y., Kim, M. J., Park, J. H., Kim, H. S., Youn, H. J., Kim, K. H., et al. (2011). Comparison of ventricular dyssynchrony according to the position of right ventricular pacing electrode: A multi-center prospective echocardiographic study. Journal of Cardiovascular Ultrasound, 19, 15–20.

  60. 60.

    Peschar, M., de Swart, H., Michels, K. J., Reneman, R. S., & Prinzen, F. W. (2003). Left ventricular septal and apex pacing for optimal pump function in canine hearts. Journal of the American College of Cardiology, 41, 1218–1226.

  61. 61.

    Kronborg, M. B., Mortensen, P. T., Gerdes, J. C., Jensen, H. K., & Nielsen, J. C. (2011). His and para-His pacing in AV block: Feasibility and electrocardiographic findings. Journal of Interventional Cardiac Electrophysiology, 31(3), 255–262.

  62. 62.

    Catanzariti, D., Maines, M., Cemin, C., Broso, G., Marotta, T., & Vergara, G. (2006). Permanent direct his bundle pacing does not induce ventricular dyssynchrony unlike conventional right ventricular apical pacing. An intrapatient acute comparison study. Journal of Interventional Cardiac Electrophysiology, 16, 81–92.

  63. 63.

    Zanon, F., Bacchiega, E., Rampin, L., Aggio, S., et al. (2008). Direct his bundle pacing preserves coronary perfusion compared with right ventricular apical pacing: A prospective, cross-over mid-term study. Europace, 10, 580–587.

  64. 64.

    Webb, M. G. (2011). Evaluation of a system to screen for heart failure associated with pacemaker-induced dyssynchrony. Abstract, Heart & Lung, 40, 372.

  65. 65.

    Foley, P. W. X., Muhyaldeen, S. A., Chalil, S., Smith, R. E. A., Sanderson, J. E., & Leyva, F. (2009). Long-term effects of upgrading from right ventricular pacing to cardiac resynchronization therapy in patients with heart failure. Europace, 11, 495–501.

  66. 66.

    Witte, K. K. A., Pipes, R. R., Nanthakumar, K., & Parker, J. D. (2006). Biventricular pacemaker upgrade in previously paced heart failure patients—Improvements in ventricular dyssynchrony. Journal of Cardiac Failure, 12, 199–204.

  67. 67.

    Tanaka, H., Hara, H., Adelstein, E. C., Schwartzman, D., Saba, S., & Gorcsan, J. (2010). Comparative mechanical activation mapping of RV pacing to LBBB by 2D and 3D speckle tracking and association with response to resynchronization therapy. Journal of the American College of Cardiology: Cardiovascular Imaging, 3, 461–471.

  68. 68.

    Eldadah, Z. A., Rosen, B., Hay, I., Edvardsen, T., et al. (2006). The benefit of upgrading chronically right ventricle-paced heart failure patients to resynchronization therapy demonstrated by strain rate imaging. Heart Rhythm, 3, 435–442.

  69. 69.

    Vatankulu, M. A., Goktekin, O., Kaya, M. G., Ayhan, S., Kucukdurmaz, Z., Sutton, R., et al. (2009). Effect of long-term resynchronization therapy on left ventricular remodeling in pacemaker patients upgraded to biventricular devices. The American Journal of Cardiology, 103, 1280–1284.

  70. 70.

    Leclerq, C., Cazeau, S., Lellouche, D., Fossati, F., et al. (2007). Upgrading from single chamber right ventricular to biventricular pacing in permanently paced patients with worsening heart failure. Pacing and Clinical Electrophysiology, 30, S23–S30.

Download references

Author information

Correspondence to Alan J. Bank.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Apical four-chamber echocardiograms of a patient with pacing-induced dyssynchrony and HF. The left panel shows a markedly hypokinetic septum, especially in the mid and apical regions. The right panel shows greatly improved septal function, and improved LV size and systolic function after upgrade to CRT. Global EF normalized to 60% following CRT upgrade (WMV 860 kb)

Parasternal short-axis echocardiograms of the same patient (ESM 1) with pacing induced dyssynchrony and HF. The regional wall motion abnormality in the septum improves along with global LV systolic function after upgrade to CRT (WMV 1,031 kb)

Apical four-chamber echocardiograms of a patient with pacing induced dyssynchrony and HF. Reprogramming of the patient’s pacemaker to a lower rate with extended AV delay reduced ventricular paced beats from 87% to 17%. Global EF significantly improved following reprogramming (right panel) (WMV 1,163 kb)

Parasternal short-axis echocardiograms of the same patient (ESM 3) with pacing-induced dyssynchrony and HF. Reprogramming of pacemaker settings to reduce RV pacing frequency markedly improved LV size and systolic function (WMV 1,480 kb)

ESM 1

Apical four-chamber echocardiograms of a patient with pacing-induced dyssynchrony and HF. The left panel shows a markedly hypokinetic septum, especially in the mid and apical regions. The right panel shows greatly improved septal function, and improved LV size and systolic function after upgrade to CRT. Global EF normalized to 60% following CRT upgrade (WMV 860 kb)

ESM 2

Parasternal short-axis echocardiograms of the same patient (ESM 1) with pacing induced dyssynchrony and HF. The regional wall motion abnormality in the septum improves along with global LV systolic function after upgrade to CRT (WMV 1,031 kb)

ESM 3

Apical four-chamber echocardiograms of a patient with pacing induced dyssynchrony and HF. Reprogramming of the patient’s pacemaker to a lower rate with extended AV delay reduced ventricular paced beats from 87% to 17%. Global EF significantly improved following reprogramming (right panel) (WMV 1,163 kb)

ESM 4

Parasternal short-axis echocardiograms of the same patient (ESM 3) with pacing-induced dyssynchrony and HF. Reprogramming of pacemaker settings to reduce RV pacing frequency markedly improved LV size and systolic function (WMV 1,480 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bank, A.J., Gage, R.M. & Burns, K.V. Right Ventricular Pacing, Mechanical Dyssynchrony, and Heart Failure. J. of Cardiovasc. Trans. Res. 5, 219–231 (2012). https://doi.org/10.1007/s12265-011-9341-8

Download citation

Keywords

  • Cardiac mechanics
  • Hemodynamics
  • Pacing
  • Echocardiography
  • Tissue Doppler imaging