Biomarkers for Parkinson’s Disease: How Good Are They?
Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disorder with no cure in sight. Clinical challenges of the disease include the inability to make a definitive diagnosis at the early stages and difficulties in predicting the disease progression. The unmet demand to identify reliable biomarkers for early diagnosis and management of the disease course of PD has attracted a lot of attention. However, only a few reported candidate biomarkers have been tried in clinical practice at the present time. Studies on PD biomarkers have often overemphasized the discovery of novel identity, whereas efforts to further evaluate such candidates are rare. Therefore, we update the new development of biomarker discovery in PD and discuss the standard process in the evaluation and assessment of the diagnostic or prognostic value of the identified potential PD biomarkers in this review article. Recent developments in combined biomarkers and the current status of clinical trials of biomarkers as outcome measures are also discussed. We believe that the combination of different biomarkers might enhance the specificity and sensitivity over a single measure that might not be sufficient for such a multiplex disease.
Keywords
Parkinson’s disease Biomarkers Combined biomarkers Clinical trialsNotes
Acknowledgements
This review was supported by the National Natural Science Foundation of China (81430021 and 81771521) and the Key Research and Development Plan of the Science and Technology Department of Liaoning Province, China (2018225051).
References
- 1.Dickson DW. Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb Perspect Med 2012, 2: a009258.PubMedPubMedCentralCrossRefGoogle Scholar
- 2.Kalia LV, Lang AE. Parkinson’s disease. Lancet 2015, 386: 896–912.CrossRefGoogle Scholar
- 3.Erkkinen MG, Kim MO, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol 2018, 10: a033118.PubMedCrossRefPubMedCentralGoogle Scholar
- 4.Li S, Le W. Milestones of Parkinson’s disease research: 200 years of history and beyond. Neurosci Bull 2017, 33: 598–602.PubMedPubMedCentralCrossRefGoogle Scholar
- 5.Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology 2016, 86: 566–576.PubMedCrossRefGoogle Scholar
- 6.Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS 2010, 5: 463–466.PubMedPubMedCentralCrossRefGoogle Scholar
- 7.Parnetti L, Gaetani L, Eusebi P, Paciotti S, Hansson O, El-Agnaf O, et al. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol 2019, 6: 573–586.CrossRefGoogle Scholar
- 8.Perlis R. Translating biomarkers to clinical practice. Mol Psychiatry 2011, 16: 1076.PubMedPubMedCentralCrossRefGoogle Scholar
- 9.Shao Y, Le W. Recent advances and perspectives of metabolomics-based investigations in Parkinson’s disease. Mol Neurodegener 2019, 14: 3. https://doi.org/10.1186/s13024-018-03042.CrossRefPubMedPubMedCentralGoogle Scholar
- 10.Lotankar S, Prabhavalkar KS, Bhatt LK. Biomarkers for Parkinson’s disease: recent advancement. Neurosci Bull 2017, 33: 585–597.PubMedPubMedCentralCrossRefGoogle Scholar
- 11.Chen-Plotkin AS, Albin R, Alcalay R, Babcock D, Bajaj V, Bowman D, et al. Finding useful biomarkers for Parkinson’s disease. Sci Transl Med 2018, 10: eaam6003.PubMedPubMedCentralCrossRefGoogle Scholar
- 12.Li S, Le W. Biomarker discovery in Parkinson’s disease: present challenges and future opportunities. Neurosci Bull 2017, 33: 481–482.PubMedPubMedCentralCrossRefGoogle Scholar
- 13.Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 2006, 24: 971–983.PubMedCrossRefGoogle Scholar
- 14.Ball JR, Micheel CM. Evaluation of biomarkers and surrogate endpoints in chronic disease. National Academies Press: Washington, 2010: 1–314.Google Scholar
- 15.Forshed J. Experimental design in clinical ‘omics biomarker discovery. J Proteome Res 2017, 16: 3954–3960.PubMedCrossRefGoogle Scholar
- 16.Postuma RB, Berg D. Prodromal Parkinson’s disease: the decade past, the decade to come. Mov Disord 2019, 34: 665–675.PubMedCrossRefGoogle Scholar
- 17.Kang UJ, Goldman JG, Alcalay RN, Xie T, Tuite P, Henchcliffe C, et al. The BioFIND study: characteristics of a clinically typical Parkinson’s disease biomarker cohort. Mov Disord 2016, 31: 924–932.PubMedPubMedCentralCrossRefGoogle Scholar
- 18.Sanders GD, Maciejewski ML, Basu A. Overview of cost-effectiveness analysis. JAMA 2019, 14: 1400–1401.CrossRefGoogle Scholar
- 19.Fullard ME, Morley JF, Duda JE. Olfactory dysfunction as an early biomarker in Parkinson’s disease. Neurosci Bull 2017, 33: 515–525.PubMedPubMedCentralCrossRefGoogle Scholar
- 20.Iranzo A, Tolosa E, Gelpi E, Molinuevo JL, Valldeoriola F, Serradell M, et al. Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: an observational cohort study. Lancet Neurol 2013, 12: 443–453.PubMedCrossRefGoogle Scholar
- 21.Fereshtehnejad SM, Montplaisir JY, Pelletier A, Gagnon JF, Berg D, Postuma RB. Validation of the MDS research criteria for prodromal Parkinson’s disease: longitudinal assessment in a REM sleep behavior disorder (RBD) cohort. Mov Disord 2017, 32: 865–873.PubMedCrossRefGoogle Scholar
- 22.Haehner A, Boesveldt S, Berendse H, Mackay-Sim A, Fleischmann J, Silburn P, et al. Prevalence of smell loss in Parkinson’s disease–a multicenter study. Parkinsonism Relat Disord 2009, 15: 490–494.CrossRefGoogle Scholar
- 23.Reichmann H. Premotor diagnosis of Parkinson’s disease. Neurosci Bull 2017, 33: 526–534.PubMedPubMedCentralCrossRefGoogle Scholar
- 24.Le W, Dong J, Li S, Korczyn AD. Can biomarkers help the early diagnosis of Parkinson’s disease? Neurosci Bull 2017, 33: 535–542.PubMedPubMedCentralCrossRefGoogle Scholar
- 25.Poewe W, Mahlknecht P. Combined assessment of midbrain hyperechogenicity, hyposmia and motor asymmetry improves diagnostic accuracy in early Parkinson’s disease. Expert Rev Neurother 2012, 12: 911–914.PubMedCrossRefGoogle Scholar
- 26.Guan X, Xu X, Zhang M. Region-specific iron measured by MRI as a biomarker for Parkinson’s disease. Neurosci Bull 2017, 33: 85–91.PubMedCrossRefGoogle Scholar
- 27.Suwijn SR, van Boheemen CJ, de Haan RJ, Tissingh G, Booij J, de Bie RM. The diagnostic accuracy of dopamine transporter SPECT imaging to detect nigrostriatal cell loss in patients with Parkinson’s disease or clinically uncertain parkinsonism: a systematic review. EJNMMI Res 2015, 5: 12. https://doi.org/10.1186/s13550-015-0087-1.CrossRefPubMedPubMedCentralGoogle Scholar
- 28.Bajaj N, Hauser RA, Grachev ID. Clinical utility of dopamine transporter single photon emission CT (DaT-SPECT) with (123I) ioflupane in diagnosis of parkinsonian syndromes. J Neurol Neurosurg Psychiatry 2013, 84: 1288–1295.PubMedPubMedCentralCrossRefGoogle Scholar
- 29.Ba F, Martin WW. Dopamine transporter imaging as a diagnostic tool for parkinsonism and related disorders in clinical practice. Parkinsonism Relat Disord 2015, 21: 87–94.PubMedCrossRefGoogle Scholar
- 30.Jennings D, Siderowf A, Stern M, Seibyl J, Eberly S, Oakes D, et al. Conversion to Parkinson disease in the PARS hyposmic and dopamine transporter–deficit prodromal cohort. JAMA Neurol 2017, 74: 933–940.PubMedPubMedCentralCrossRefGoogle Scholar
- 31.Wing YK, Lam SP, Zhang J, Leung E, Ho CL, Chen S, et al. Reduced striatal dopamine transmission in REM sleep behavior disorder comorbid with depression. Neurology 2015, 84: 516–522.PubMedCrossRefPubMedCentralGoogle Scholar
- 32.Heim B, Krismer F, De Marzi R, Seppi K. Magnetic resonance imaging for the diagnosis of Parkinson’s disease. J Neural Trans 2017, 124: 915–964.CrossRefGoogle Scholar
- 33.Jonkman LE, Kenkhuis B, Geurts JJ, van de Berg WD. Post-mortem MRI and histopathology in neurologic disease: a translational approach. Neurosci Bull 2019, 35: 229–243.PubMedCrossRefPubMedCentralGoogle Scholar
- 34.Miyoshi F, Ogawa T, Kitao SI, Kitayama M, Shinohara Y, Takasugi M, et al. Evaluation of Parkinson disease and Alzheimer disease with the use of neuromelanin MR imaging and 123I-metaiodobenzylguanidine scintigraphy. AJNR Am J Neuroradiol 2013, 34: 2113–2118.PubMedCrossRefPubMedCentralGoogle Scholar
- 35.Kau T, Hametner S, Endmayr V, Deistung A, Prihoda M, Haimburger E, et al. Microvessels may confound the “Swallow Tail Sign” in normal aged midbrains: a postmortem 7 T SW-MRI study. J Neuroimaging 2019, 29: 65–69.PubMedCrossRefPubMedCentralGoogle Scholar
- 36.Calloni S, Conte G, Sbaraini S, Cilia R, Contarino V, Avignone S, et al. Multiparametric MR imaging of Parkinsonisms at 3 Tesla: its role in the differentiation of Idiopathic Parkinson’s disease versus atypical Parkinsonian disorders. Eur J Radiol 2018, 109: 95–100.PubMedCrossRefPubMedCentralGoogle Scholar
- 37.Fayyad M, Salim S, Majbour N, Erskine D, Stoops E, Mollenhauer B, et al. Parkinson’s disease biomarkers based on alpha‐synuclein. J Neurochem 2019, https://doi.org/10.1111/jnc.14809.CrossRefPubMedGoogle Scholar
- 38.Hong Z, Shi M, Chung KA, Quinn JF, Peskind ER, Galasko D, et al. DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 2010, 133: 713–726.PubMedPubMedCentralCrossRefGoogle Scholar
- 39.Zhou B, Wen M, Yu WF, Zhang CL, Jiao L. The diagnostic and differential diagnosis utility of cerebrospinal fluid α-synuclein levels in Parkinson’s disease: a meta-analysis. Parkinsons Dis 2015, 2015: 567386.Google Scholar
- 40.Mollenhauer B, Trautmann E, Taylor P, Manninger P, Sixel-Döring F, Ebentheuer J, et al. Total CSF α-synuclein is lower in de novo Parkinson patients than in healthy subjects. Neurosci Lett 2013, 532: 44–48.PubMedCrossRefGoogle Scholar
- 41.Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, Sixel-Döring F, Trenkwalder C, Schlossmacher MG. α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol 2011, 10: 230–240.PubMedCrossRefGoogle Scholar
- 42.Majbour NK, Vaikath NN, van Dijk KD, Ardah MT, Varghese S, Vesterager LB, et al. Oligomeric and phosphorylated alpha-synuclein as potential CSF biomarkers for Parkinson’s disease. Mol Neurodegener 2016, 11: 7. https://doi.org/10.1186/s13024-016-0072-9 CrossRefPubMedPubMedCentralGoogle Scholar
- 43.Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT. Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S A 2000, 97: 571–576.PubMedPubMedCentralCrossRefGoogle Scholar
- 44.Parnetti L, Farotti L, Eusebi P, Chiasserini D, De Carlo C, Giannandrea D, et al. Differential role of CSF alpha-synuclein species, tau, and Aβ42 in Parkinson’s disease. Front Aging Neurosci 2014, 6: 53. https://doi.org/10.3389/fnagi.2014.00053.CrossRefPubMedPubMedCentralGoogle Scholar
- 45.Eusebi P, Giannandrea D, Biscetti L, Abraha I, Chiasserini D, Orso M, et al. Diagnostic utility of cerebrospinal fluid α‐synuclein in Parkinson’s disease: a systematic review and meta‐analysis. Mov Disord 2017, 32: 1389–1400.PubMedCrossRefGoogle Scholar
- 46.Mollenhauer B, Caspell-Garcia CJ, Coffey CS, Taylor P, Shaw LM, Trojanowski JQ, et al. Longitudinal CSF biomarkers in patients with early Parkinson disease and healthy controls. Neurology 2017, 89: 1959–1969.PubMedPubMedCentralCrossRefGoogle Scholar
- 47.Mollenhauer B, Zimmermann J, Sixel-Döring F, Focke NK, Wicke T, Ebentheuer J, et al. Monitoring of 30 marker candidates in early Parkinson disease as progression markers. Neurology 2016, 87: 168–177.PubMedPubMedCentralCrossRefGoogle Scholar
- 48.Fairfoul G, McGuire LI, Pal S, Ironside JW, Neumann J, Christie S, et al. Alpha‐synuclein RT‐Qu IC in the CSF of patients with alpha‐synucleinopathies. Ann Clin Transl Neurol 2016, 3: 812–818.PubMedPubMedCentralCrossRefGoogle Scholar
- 49.Shahnawaz M, Tokuda T, Waragai M, Mendez N, Ishii R, Trenkwalder C, et al. Development of a biochemical diagnosis of Parkinson disease by detection of α-synuclein misfolded aggregates in cerebrospinal fluid. JAMA Neurol 2017, 74: 163–172.PubMedCrossRefGoogle Scholar
- 50.Paciotti S, Bellomo G, Gatticchi L, Parnetti L. Are we ready for detecting α-synuclein prone to aggregation in patients? The case of “protein-misfolding cyclic amplification” and “real-time quaking-induced conversion” as diagnostic tools. Front Neurol 2018, 9: 415. https://doi.org/10.3389/fneur.2018.00415.CrossRefPubMedPubMedCentralGoogle Scholar
- 51.Kang UJ, Boehme AK, Fairfoul G, Shahnawaz M, Ma TC, Hutten SJ, et al. Comparative study of cerebrospinal fluid α‐synuclein seeding aggregation assays for diagnosis of Parkinson’s disease. Mov Disord 2019, 34: 536–544.PubMedPubMedCentralCrossRefGoogle Scholar
- 52.Olanow CW, Brundin P. Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion‐like disorder? Mov Disord 2013, 28: 31–40.PubMedCrossRefGoogle Scholar
- 53.Lin CH, Yang SY, Horng HE, Yang CC, Chieh JJ, Chen HH, et al. Plasma α-synuclein predicts cognitive decline in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2017, 88: 818–824.PubMedPubMedCentralCrossRefGoogle Scholar
- 54.Lee P, Lee G, Park H, Bang O, Joo I, Huh K. The plasma alpha-synuclein levels in patients with Parkinson’s disease and multiple system atrophy. J Neural Transm 2006, 113: 1435–1439.PubMedCrossRefGoogle Scholar
- 55.Li QX, San Mok S, Laughton KM, McLean CA, Cappai R, Masters CL, et al. Plasma α-synuclein is decreased in subjects with Parkinson’s disease. Exp Neurol 2007, 204: 583–588.PubMedCrossRefGoogle Scholar
- 56.Shi M, Sheng L, Stewart T, Zabetian CP, Zhang J. New windows into the brain: Central nervous system-derived extracellular vesicles in blood. Prog Neurobiol 2019, 175: 96–106.PubMedCrossRefGoogle Scholar
- 57.Croese T, Furlan R. Extracellular vesicles in neurodegenerative diseases. Mol Aspects Med 2018, 60: 52–61.PubMedCrossRefGoogle Scholar
- 58.Vella L, Hill A, Cheng L. Focus on extracellular vesicles: exosomes and their role in protein trafficking and biomarker potential in Alzheimer’s and Parkinson’s disease. Int J Mol Sci 2016, 17: 173. https://doi.org/10.3390/ijms17020173.CrossRefPubMedPubMedCentralGoogle Scholar
- 59.Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C, et al. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol 2014, 128: 639–650.PubMedPubMedCentralCrossRefGoogle Scholar
- 60.Cerri S, Ghezzi C, Sampieri M, Siani F, Avenali M, Dornini G, et al. The exosomal/total α-synuclein ratio in plasma is associated with glucocerebrosidase activity and correlates with measures of disease severity in PD patients. Front Cell Neurosci 2018, 12: 125. https://doi.org/10.3389/fncel.2018.00125.CrossRefPubMedPubMedCentralGoogle Scholar
- 61.Si X, Tian J, Chen Y, Yan Y, Pu J, Zhang B. Central nervous system-derived exosomal alpha-synuclein in serum may be a biomarker in Parkinson’s disease. Neuroscience 2019; 413: 308–316.PubMedCrossRefGoogle Scholar
- 62.Zhao ZH, Chen ZT, Zhou RL, Zhang X, Ye QY, Wang YZ. Increased DJ-1 and α-synuclein in plasma neural-derived exosomes as potential markers for Parkinson’s disease. Front Aging Neurosci 2018, 10: 438. https://doi.org/10.3389/fnagi.2018.00438 CrossRefPubMedGoogle Scholar
- 63.Fraser KB, Rawlins AB, Clark RG, Alcalay RN, Standaert DG, Liu N, et al. Ser (P)‐1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson’s disease. Mov Disord 2016, 31: 1543–1550.PubMedPubMedCentralCrossRefGoogle Scholar
- 64.Wang S, Kojima K, Mobley JA, West AB. Proteomic analysis of urinary extracellular vesicles reveal biomarkers for neurologic disease. EBioMedicine 2019, 45:351–361.PubMedPubMedCentralCrossRefGoogle Scholar
- 65.Leggio L, Vivarelli S, L’Episcopo F, Tirolo C, Caniglia S, Testa N, et al. MicroRNAs in Parkinson’s disease: from pathogenesis to novel diagnostic and therapeutic approaches. Int J Mol Sci 2017, 18: 2698. https://doi.org/10.3390/ijms18122698.CrossRefPubMedCentralPubMedGoogle Scholar
- 66.Le W, Yang Z, Li T, Li S, Wei M, Qi H, et al. Altered expression levels of microRNA-132 and Nurr1 in peripheral blood of Parkinson’s disease: potential disease biomarkers. ACS Chem Neurosci 2019, 10: 2243–2249.PubMedCrossRefGoogle Scholar
- 67.Wang Y, Yang Z, Le W. Tiny but mighty: promising roles of MicroRNAs in the diagnosis and treatment of parkinson’s disease. Neurosci Bull 2017, 33: 543–551.PubMedPubMedCentralCrossRefGoogle Scholar
- 68.Schulz J, Takousis P, Wohlers I, Itua IO, Dobricic V, Ruecker G, et al. Meta‐analyses identify differentially expressed microRNAs in Parkinson’s disease. Ann Neurol 2019, 85: 835–851.PubMedCrossRefGoogle Scholar
- 69.Le W, Yang Z, Li T, Cui Y, Li S, Cheng C, et al. Elevated plasma microRNA-105-5p level in patients with idiopathic Parkinson’s disease: a potential disease biomarker. Front Neurosci 2019, 13: 218. https://doi.org/10.3389/fnins.2019.00218.CrossRefPubMedPubMedCentralGoogle Scholar
- 70.Patil KS, Basak I, Dalen I, Hoedt E, Lange J, Lunde KA, et al. Combinatory microRNA serum signatures as classifiers of Parkinson’s disease. Parkinsonism Relat Disord 2019, 64: 202–210.PubMedCrossRefPubMedCentralGoogle Scholar
- 71.Le W, Rowe DB, Jankovic J, Xie W, Appel SH. Effects of cerebrospinal fluid from patients with Parkinson disease on dopaminergic cells. Arch Neurol 1999, 56:194–200.PubMedCrossRefPubMedCentralGoogle Scholar
- 72.Reale M, Iarlori C, Thomas A, Gambi D, Perfetti B, Di Nicola M, Onofrj M. Peripheral cytokines profile in Parkinson’s disease. Brain Behav Immun 2009, 231: 55–63.CrossRefGoogle Scholar
- 73.Le W, Li T, Yang Z, Li S, Shen B. Alterations of NURR1 and cytokines in the peripheral blood mononuclear cells: combined biomarkers for Parkinson’s disease. Front Aging Neurosci 2018, 10: 392. https://doi.org/10.3389/fnagi.2018.00392.CrossRefPubMedPubMedCentralGoogle Scholar
- 74.Eidson LN, Kannarkat GT, Barnum CJ, Chang J, Chung J, Yen M. Candidate inflammatory biomarkers display unique relationships with alpha-synuclein and correlate with measures of disease severity in subjects with Parkinson’s disease. J Neuroinflammation 2017, 14:164. https://doi.org/10.1186/s12974-017-0935-1.CrossRefPubMedPubMedCentralGoogle Scholar
- 75.Wang G, Chen S, Cui SS, Du JJ, Liu SH, Meng J, et al. Serum soluble lymphocyte activation gene‐3 as a diagnostic biomarker in Parkinson’s disease: A pilot multicenter study. Mov Disord 2019, 34:138–141.PubMedCrossRefPubMedCentralGoogle Scholar
- 76.Nair AT, Ramachandran V, Joghee NM, Antony S, Ramalingam G. Gut microbiota dysfunction as reliable non-invasive early diagnostic biomarkers in the pathophysiology of Parkinson’s disease: a critical review. J Neurogastroenterol Motil 2018, 24: 30–42.PubMedPubMedCentralCrossRefGoogle Scholar
- 77.Perez-Pardo P, Dodiya HB, Engen PA, Forsyth CB, Huschens AM, Shannon KM, et al. Role of TLR4 in the gut-brain axis in Parkinson’s disease: a translational study from men to mice. Gut 2019, 68: 829–843.PubMedCrossRefPubMedCentralGoogle Scholar
- 78.Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Kinnunen E, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 2015, 30: 350–358.PubMedCrossRefPubMedCentralGoogle Scholar
- 79.Majbour NK, Vaikath NN, Eusebi P, Chiasserini D, Ardah M, Varghese S, et al. Longitudinal changes in CSF alpha‐synuclein species reflect Parkinson’s disease progression. Mov Disord 2016, 31: 1535–1542.PubMedCrossRefPubMedCentralGoogle Scholar
- 80.Førland MG, Tysnes OB, Aarsland D, Maple‐Grødem J, Pedersen KF, Alves G, et al. The value of cerebrospinal fluid α‐synuclein and the tau/α‐synuclein ratio for diagnosis of neurodegenerative disorders with Lewy pathology. Eur J Neurol 2019, https://doi.org/10.1111/ene.14032.CrossRefPubMedGoogle Scholar
- 81.Delgado‐Alvarado M, Gago B, Gorostidi A, Jiménez‐Urbieta H, Dacosta‐Aguayo R, Navalpotro‐Gómez I, et al. Tau/α‐synuclein ratio and inflammatory proteins in Parkinson’s disease: An exploratory study. Mov Disord 2017, 32: 1066–1073.PubMedCrossRefGoogle Scholar
- 82.Bäckström DC, Domellöf ME, Linder J, Olsson B, Öhrfelt A, Trupp M, et al. Cerebrospinal fluid patterns and the risk of future dementia in early, incident Parkinson disease. JAMA Neurol 2015, 72: 1175–1182.PubMedCrossRefGoogle Scholar
- 83.Chiasserini D, Biscetti L, Eusebi P, Salvadori N, Frattini G, Simoni S, et al. Differential role of CSF fatty acid binding protein 3, α-synuclein, and Alzheimer’s disease core biomarkers in Lewy body disorders and Alzheimer’s dementia. Alzheimers Res Ther 2017, 9: 52. https://doi.org/10.1186/s13195-017-0276-4.CrossRefPubMedPubMedCentralGoogle Scholar
- 84.Magdalinou N, Paterson R, Schott J, Fox N, Mummery C, Blennow K, et al. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry 2015, 86: 1240–1247.PubMedPubMedCentralCrossRefGoogle Scholar
- 85.Herbert MK, Eeftens JM, Aerts MB, Esselink RA, Bloem BR, Kuiperij HB, et al. CSF levels of DJ-1 and tau distinguish MSA patients from PD patients and controls. Parkinsonism Relat Disord 2014, 20: 112–115.PubMedCrossRefGoogle Scholar
- 86.Parnetti L, Paciotti S, Eusebi P, Dardis A, Zampieri S, Chiasserini D, et al. Cerebrospinal fluid β‐glucocerebrosidase activity is reduced in parkinson’s disease patients. Mov Disord 2017, 32: 1423–1431.PubMedCrossRefGoogle Scholar
- 87.Rathnayake D, Chang T, Udagama P. Selected serum cytokines and nitric oxide as potential multi-marker biosignature panels for Parkinson disease of varying durations: a case-control study. BMC Neurol 2019, 19: 56. https://doi.org/10.1186/s12883-019-1286-6.CrossRefPubMedPubMedCentralGoogle Scholar
- 88.Marques TM, Kuiperij HB, Bruinsma IB, van Rumund A, Aerts MB, Esselink RA, et al. MicroRNAs in cerebrospinal fluid as potential biomarkers for Parkinson’s disease and multiple system atrophy. Mol Neurobio 2017, 54: 7736–7745.CrossRefGoogle Scholar
- 89.Jin L, Wang J, Wang C, Zhang Y, Lv M, Zhou Y, et al. Combined visualization of nigrosome-1 and neuromelanin in the substantia nigra using 3T MRI for the differential diagnosis of essential tremor and de novo Parkinson’s disease. Front Neurol 2019, 10: 100. https://doi.org/10.3389/fneur.2019.00100.CrossRefPubMedPubMedCentralGoogle Scholar
- 90.Lorio S, Sambataro F, Bertolino A, Draganski B, Dukart J. The combination of DAT-SPECT, structural and diffusion MRI predicts clinical progression in Parkinson’s disease. Front Aging Neurosci 2019, 11. https://doi.org/10.3389/fnagi.2019.00057.
- 91.Matsusue E, Fujihara Y, Tanaka K, Aozasa Y, Shimoda M, Nakayasu H, et al. The utility of the combined use of 123I-FP-CIT SPECT and neuromelanin MRI in differentiating Parkinson’s disease from other parkinsonian syndromes. Acta Radiol 2019, 60: 230–238.PubMedCrossRefGoogle Scholar
- 92.Chen XQ, Niu JP, Peng RQ, Song YH, Xu N, Zhang YW. The early diagnosis of Parkinson’s disease through combined biomarkers. Acta Neurol Scand 2019, 4:268–273.CrossRefGoogle Scholar
- 93.Kim R, Lee J, Kim HJ, Kim A, Jang M, Jeon B, et al. CSF β-amyloid42 and risk of freezing of gait in early Parkinson disease. Neurology 2019, 92: e40–e47.PubMedCrossRefGoogle Scholar
- 94.Parnetti L, Chiasserini D, Persichetti E, Eusebi P, Varghese S, Qureshi MM, et al. Cerebrospinal fluid lysosomal enzymes and alpha‐synuclein in Parkinson’s disease. Mov Disord 2014, 29: 1019–1027.PubMedCrossRefGoogle Scholar
- 95.Schrag A, Siddiqui UF, Anastasiou Z, Weintraub D, Schott JM. Clinical variables and biomarkers in prediction of cognitive impairment in patients with newly diagnosed Parkinson’s disease: a cohort study. Lancet Neurol 2017, 16: 66–75.PubMedCrossRefGoogle Scholar