Advertisement

Scorpion Venom Heat-Resistant Peptide is Neuroprotective against Cerebral Ischemia-Reperfusion Injury in Association with the NMDA-MAPK Pathway

  • Xu-Gang Wang
  • Dan-Dan Zhu
  • Na Li
  • Yue-Lin Huang
  • Ying-Zi Wang
  • Ting Zhang
  • Chen-Mei Wang
  • Bin Wang
  • Yan Peng
  • Bi-Ying Ge
  • Shao LiEmail author
  • Jie ZhaoEmail author
Original Article
  • 39 Downloads

Abstract

Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Our previous studies have shown that SVHRP is neuroprotective in models of Alzheimer’s disease and Parkinson’s disease. The present study aimed to explore the potential neuroprotective effects of SVHRP on cerebral ischemia/reperfusion (I/R) injury, using a mouse model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a cellular model of oxygen-glucose deprivation/reoxygenation (OGD/R). Our results showed that SVHRP treatment decreased the neurological deficit scores, edema formation, infarct volume and neuronal loss in the MCAO/R mice, and protected primary neurons against OGD/R insult. SVHRP pretreatment suppressed the alterations in protein levels of N-methyl-D-aspartate receptors (NMDARs) and phosphorylated p38 MAPK as well as some proinflammatory factors in both the animal and cellular models. These results suggest that SVHRP has neuroprotective effects against cerebral I/R injury, which might be associated with inhibition of the NMDA-MAPK-mediated excitotoxicity.

Keywords

Scorpion venom heat-resistant peptide Cerebral ischemia/reperfusion injury Neuroprotection NMDARs p38 MAPK 

Notes

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (81571061 and 81671061), the Scientific Study Project for Institutes of Higher Learning, Ministry of Education, Liaoning Province, China (LZ2017001), Liaoning Provincial Key R&D Program (2019JH2/10300043) and the Liaoning Revitalization Talents Program (XLYC1808031).

Conflict of interest

All authors claim that there are no conflicts of interest.

References

  1. 1.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 2014, 129: e28–e292.CrossRefGoogle Scholar
  2. 2.
    Jauch EC, Saver JL, Adams HP, Jr, Bruno A, Connors JJ, Demaerschalk BM, et al. American Heart Association Stroke Council; Council on Cardiovascular Nursing; Council on Peripheral Vascular Disease; Council on Clinical Cardiology: Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013, 44: 870–947.CrossRefGoogle Scholar
  3. 3.
    Yang Z, Zhu L, Li F, Wang J, Wan H, Pan Y. Bone marrow stromal cells as a therapeutic treatment for ischemic stroke. Neurosci Bull 2014, 30: 524–534.CrossRefGoogle Scholar
  4. 4.
    Eltzschig HK, Eckle T. Ischemia and reperfusion–from mechanism to translation. Nat Med 2011, 17: 1391–1401.CrossRefGoogle Scholar
  5. 5.
    Aromugam TV, Woodruff TM, Lathia JD, Selvaraj PK, Mattson MP, Taylor SM. Neuroprotection in stroke by complement inhibition and immunoglohulin therapy. Neuroscience 2009, 158: 1074–1089.CrossRefGoogle Scholar
  6. 6.
    Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology 2008, 55: 310–318.CrossRefGoogle Scholar
  7. 7.
    Lee JM, Zjpfel GJ, Choi DW. The changing landscape of ischemic brain injury mechanisms. Nature 1999, 399: A7–14.CrossRefGoogle Scholar
  8. 8.
    Cao Z, Wu XF, Peng Y, Zhang R, Li N, Yang JY, et al. Scorpion venom heat-resistant peptide attenuates glial fibrillary acidic protein expression via c-jun/ap-1. Cell Mol Neurobiol 2015, 35: 1073–1079.CrossRefGoogle Scholar
  9. 9.
    Wang T, Wang SW, Zhang Y, Wu XF, Peng Y, Cao Z, et al. Scorpion venom heat-resistant peptide (SVHRP) enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF). PLoS One 2014, 9: e109977.CrossRefGoogle Scholar
  10. 10.
    Yin SM, Zhao D, Yu DQ, Li SL, An D, Peng Y, et al. Neuroprotection by scorpion venom heat resistant peptide in 6-hydroxydopamine rat model of early-stage Parkinson’s disease. Sheng Li Xue Bao 2014, 66: 658–666.Google Scholar
  11. 11.
    Zhang XG, Wang X, Zhou TT, Wu XF, Peng Y, Zhang WQ, et al. Scorpion venom heat-resistant peptide protects transgenic Caenorhabditis elegans from β-amyloid toxicity. Front Pharmacol 2016, 7: 227.Google Scholar
  12. 12.
    Sun J, Tong L, Luan Q, Deng J, Li Y, Li Z, et al. Protective effect of delayed remote limb ischemic postconditioning: role of mitochondrial K (ATP) channels in a rat model of focal cerebral ischemic reperfusion injury. J Cereb Blood Flow Metab 2012, 32: 851–859.CrossRefGoogle Scholar
  13. 13.
    Hossmann KA. Cerebral ischemia: models, methods and outcomes. Neuropharmacolog 2008, 55: 257–270.CrossRefGoogle Scholar
  14. 14.
    Clark WM, Lessov NS, Dixon MP, Eckenstein F. Monofilament intraluminal middle cerebral arterv occlusion in the mouse. Neurol Res 1997, 19: 641–648.CrossRefGoogle Scholar
  15. 15.
    Tsubokawa T, Jadhav V, Solaroglu I, Shiokawa Y, Konishi Y, Zhang JH. Lecithinized superoxide dismutase improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Stroke 2007, 38: 1057–1062.CrossRefGoogle Scholar
  16. 16.
    Mdzinarishvili A, Kiewert C, Kumar V, Hillert M, Klein J. Bilobalide prevents ischemia-induced edema formation in vitro and in vivo. Neuroscience 2007, 144: 217–222.CrossRefGoogle Scholar
  17. 17.
    Stumm R, Kolodziej A, Prinz V, Endres M, Wu DF, Hollt V. Pituitary adenylate cyclase-activating polypeptide is up-regulated in cortical pyramidal cells after focal ischemia and protects neurons from mild hypoxic/ischemic damage. J Neurochem 2007, 103: 1666–1681.CrossRefGoogle Scholar
  18. 18.
    Shu JC, Bradley ME, Lee TC. Chemical hypoxia triggers apoptosis of cultured neonatal rat cardiac myocytes: Modulation by calcium-regulated proteases and protein kinases. Mole Cell Bioch 1998, 178: 141–149.CrossRefGoogle Scholar
  19. 19.
    Goldberg MP, Choi DW. Oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 1993, 13: 3510-3524.CrossRefGoogle Scholar
  20. 20.
    Wu JB, Song NN, Wei XB, Guan HS, Zhang XM. Protective effects of paeonol on cultured rat hippocampal neurons against oxygen-glucose deprivation induced injury. J Neurol Sci 2008, 264: 50–55.CrossRefGoogle Scholar
  21. 21.
    Xu W, Zha RP, Wang WY, Wang YP. Effects of scutellarin on PKCgamma in PC12 cell injury induced by oxygen and glucose deprivation. Acta Pharmacol Sin 2007, 28: 1573–1579.CrossRefGoogle Scholar
  22. 22.
    Schinder AF, Olson EC, Spitzer NC, Montal M. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J Neurosci 1996, 16: 6125–6133.CrossRefGoogle Scholar
  23. 23.
    Sgambato-Faure V, Cenci MA. Glutamatergic mechanisms in the dyskinesias induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson’s disease. Prog Neurobiol 2012, 96: 69–86.CrossRefGoogle Scholar
  24. 24.
    Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995, 15: 961–973.CrossRefGoogle Scholar
  25. 25.
    Chen M, Lu TJ, Chen XJ, Zhou Y, Chen Q, Feng XY, et al. Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance. Stroke 2008, 39: 3042–3048.CrossRefGoogle Scholar
  26. 26.
    Liu, B, Li L, Zhang Q, Chang N, Wang D, Shan Y, et al. Preservation of GABAA receptor function by PTEN inhibition protects against neuronal death in ischemic stroke. Stroke 2010, 41: 1018–1026.CrossRefGoogle Scholar
  27. 27.
    Lyden PD, Jackson-Friedman C, Shin C, Hassid S. Synergistic combinatorial stroke therapy: A quantal bioassay of a GABA agonist and a glutamate antagonist. Exp Neurol 2000, 163: 477–489.CrossRefGoogle Scholar
  28. 28.
    Krupinski J, Slevin M, Marti E, Catena E, Rubio F, Gaffney J. Time-course phosphorylation of the mitogen activated protein (MAP) kinase group of signalling proteins and related molecules following middle cerebral artery occlusion (MCAO) in rats. Neuropathol Appl Neurobiol 2003, 29: 144–158.CrossRefGoogle Scholar
  29. 29.
    Piao CS, Che Y, Han PL, Lee JK. Delayed and differential induction of p38 MAPK isoforms in microglia and astrocytes in the brain after transient global ischemia. Mol Brain Res 2002, 107: 137–144.CrossRefGoogle Scholar
  30. 30.
    Ginsberg MD. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 2008, 55: 363–389.CrossRefGoogle Scholar
  31. 31.
    Moussaddy A, Demchuk AM, Hill MD. Thrombolytic therapies for ischemic stroke: Triumphs and future challenges. Neuropharmacology 2018, 134: 272–279.CrossRefGoogle Scholar
  32. 32.
    Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 2007, 54: 34–66.CrossRefGoogle Scholar
  33. 33.
    Nakka VP, Gusain A, Mehta SL, Raghubir R. Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 2008, 37: 7–38.CrossRefGoogle Scholar
  34. 34.
    Aromugam TV, Woodruff TM, Lathia JD, Selvaraj PK, Mattson MP, Taylor SM. Neuroprotection in stroke by complement inhibition and immunoglohulin therapy. Neuroscience 2009, 158: 1074–1089.CrossRefGoogle Scholar
  35. 35.
    Burd I, Welling J, Kannan G, Johnston MV. Excitotoxicity as a common mechanism for fetal neuronal injury with hypoxia and intrauterine inflammation. Adv Pharmacol 2016, 76: 85–101.CrossRefGoogle Scholar
  36. 36.
    Howes MJ, Houghton PJ. Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacol Biochem Behav 2003, 75: 513–527.CrossRefGoogle Scholar
  37. 37.
    Jiang H, Luo X, Bai D. Progress in clinical, pharmacological, chemical and structural biological studies of huperzine A: a drug of traditional Chinese medicine origin for the treatment of Alzheimer’s disease. Curr Med Chem 2003, 10: 2231–2252.CrossRefGoogle Scholar
  38. 38.
    Yan H, Li L, Tang XC. Treating senile dementia with traditional Chinese medicine. Clin Interv Aging 2007, 2: 201–208.Google Scholar
  39. 39.
    Wang Z, Wang W, Shao Z, Gao B, Li J, Ma J, et al. Eukaryotic expression and purification of anti-epilepsy peptide of Buthus martensii Karsch and its protein interactions. Mol Cell Biochem 2009, 330: 97–104.CrossRefGoogle Scholar
  40. 40.
    Gong JP, Gwee MC, Gopalakrishnakone P. Buthus martensi karsch venom: prejunctional adrenergic activity in the rat isolated anococcygeus muscle. Toxicon 1995, 33: 1133–1139.CrossRefGoogle Scholar
  41. 41.
    Srinivasan KN, Nirthanan S, Sasaki T, Sato K, Cheng B, Gwee MC, et al. Functional site of bukatoxin, an alpha-type sodium channel neurotoxin from the Chinese scorpion (Buthus martensi Karsch) venom: probable role of the (52) PDKVP (56) loop. FEBS Lett 2001, 494: 145–149.CrossRefGoogle Scholar
  42. 42.
    Ye P, Jiao Y, Li Z, Hua L, Fu J, Jiang F, et al. Scorpion toxin BmK I directly activates Nav1.8 in primary sensory neurons to induce neuronal hyperexcitability in rats. Protein Cell 2015, 6: 443–452.CrossRefGoogle Scholar
  43. 43.
    Zhu H, Wang Z, Jin J, Pei X, Zhao Y, Wu H, et al. Parkinson’s disease-like forelimb akinesia induced by BmK I, a sodium channel modulator. Behav Brain Res 2016, 308: 166–176.CrossRefGoogle Scholar
  44. 44.
    Mitani A, Kataoka K. Critical levels of extracellular glutamate mediating gerbil hippocampal delayed neuronal death during hypothermia: Brain microdialysis study. Neuroscience 1991, 42: 661–670.CrossRefGoogle Scholar
  45. 45.
    Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 2001, 11: 327–335.CrossRefGoogle Scholar
  46. 46.
    Lau CG, Zukin RS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 2007, 8: 413–426.CrossRefGoogle Scholar
  47. 47.
    Prybylowski K, Wenthold RJ. N-methyl-D-aspartate receptors: subunit assembly and trafficking to the synapse. J Biol Chem 2004, 279: 9673–9676.CrossRefGoogle Scholar
  48. 48.
    Su F, Guo AC, Li WW, Zhao YL, Qu ZY, Wang YJ, et al. Low-dose ethanol preconditioning protects against oxygen-glucose deprivation/reoxygenation-induced neuronal injury by activating large conductance, Ca2+-activated K+ channels in vitro. Neurosci Bull 2017, 33: 28–40.CrossRefGoogle Scholar
  49. 49.
    Prybylowski K, Wenthold RJ. N-methyl-D-aspartate receptors: subunit assembly and trafficking to the synapse. J Biol Chem 2004, 279: 9673–9676.CrossRefGoogle Scholar
  50. 50.
    Chang YY, Gong XW, Gong HQ, Liang PJ, Zhang PM, Lu QC. GABAA receptor activity suppresses the transition from interictal to ictal epileptiform discharges in juvenile mouse hippocampus. Neurosci Bull 2018, 34:1007–1016.CrossRefGoogle Scholar
  51. 51.
    Mele M, Aspromonte MC, Duarte CB. Downregulation of GABAA receptor recycling mediated by HAP1 contributes to neuronal death in in vitro brain ischemia. Mol Neurobiol 2017, 54: 45–57.CrossRefGoogle Scholar
  52. 52.
    Kovalska M, Kovalska L, Pavlikova M, Janickova M, Mikuskova K, Adamkov M, et al. Intracellular signaling MAPK pathway after cerebral ischemia-reperfusion injury. Neurochem Res 2012, 37:1568–1577.CrossRefGoogle Scholar
  53. 53.
    Chen L, Liu X, Wang H, Qu M. Gastrodin attenuates pentylenetetrazole-induced seizures by modulating the mitogen-activated protein kinase-associated inflammatory responses in mice. Neurosci Bull 2017, 33: 264–272.CrossRefGoogle Scholar
  54. 54.
    Irving EA, Bamford M. Role of mitogen- and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab 2002, 22: 631–647.CrossRefGoogle Scholar
  55. 55.
    Barone FC, Irving EA, Ray AM, Lee JC, Kassis S, Kumar S, et al. Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Med Res Rev 2001, 21: 129–145.CrossRefGoogle Scholar
  56. 56.
    Jiang M, Li J, Peng Q, Liu Y, Liu W, Peng J, et al. Neuroprotective effects of bilobalide on cerebral ischemia and reperfusion injury are associated with inhibition of pro-inflammatory mediator production and down-regulation of JNK1/2 and p38 MAPK activation. J Neuroinflammation 2014, 11: 167.CrossRefGoogle Scholar
  57. 57.
    Strassburger M, Braun H, Reymann KG. Anti-inflammatory treatment with the p38 mitogen-activated protein kinase inhibitor SB239063 is neuroprotective, decreases the number of activated microglia and facilitates neurogenesis in oxygen-glucose-deprived hippocampal slice cultures. Eur J Pharmacol 2008, 592: 55–61.CrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS 2019

Authors and Affiliations

  • Xu-Gang Wang
    • 1
    • 2
    • 3
  • Dan-Dan Zhu
    • 1
    • 3
  • Na Li
    • 2
  • Yue-Lin Huang
    • 1
  • Ying-Zi Wang
    • 1
    • 3
  • Ting Zhang
    • 1
  • Chen-Mei Wang
    • 1
  • Bin Wang
    • 1
  • Yan Peng
    • 1
  • Bi-Ying Ge
    • 1
  • Shao Li
    • 1
    • 2
    Email author
  • Jie Zhao
    • 1
    • 2
    Email author
  1. 1.Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
  2. 2.National-Local Joint Engineering Research Center for Drug-Research and Development of Neurodegenerative DiseasesDalian Medical UniversityDalianChina
  3. 3.The Second Hospital of Dalian Medical UniversityDalianChina

Personalised recommendations