L-type Calcium Channels are Involved in Iron-induced Neurotoxicity in Primary Cultured Ventral Mesencephalon Neurons of Rats

  • Yu-Yu Xu
  • Wen-Ping Wan
  • Sha Zhao
  • Ze-Gang MaEmail author
Original Article


In the present study, we investigated the mechanisms underlying the mediation of iron transport by L-type Ca2+ channels (LTCCs) in primary cultured ventral mesencephalon (VM) neurons from rats. We found that co-treatment with 100 µmol/L FeSO4 and MPP+ (1-methyl-4-phenylpyridinium) significantly increased the production of intracellular reactive oxygen species, decreased the mitochondrial transmembrane potential and increased the caspase-3 activation compared to MPP+ treatment alone. Co-treatment with 500 µmol/L CaCl2 further aggravated the FeSO4-induced neurotoxicity in MPP+-treated VM neurons. Co-treatment with 10 µmol/L isradipine, an LTCC blocker, alleviated the neurotoxicity induced by co-application of FeSO4 and FeSO4/CaCl2. Further studies indicated that MPP+ treatment accelerated the iron influx into VM neurons. In addition, FeSO4 treatment significantly increased the intracellular Ca2+ concentration. These effects were blocked by isradipine. These results suggest that elevated extracellular Ca2+ aggravates iron-induced neurotoxicity. LTCCs mediate iron transport in dopaminergic neurons and this, in turn, results in elevated intracellular Ca2+ and further aggravates iron-induced neurotoxicity.


L-type Ca2+ channels Iron overload Parkinson’s disease Isradipine Dopamine neuron 



This work was supported by grants from the National Natural Science Foundation of China (81671249) and the Natural Science Foundation of Shandong Province, China (ZR2016CM04).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Carocci A, Catalano A, Sinicropi MS, Genchi G. Oxidative stress and neurodegeneration: the involvement of iron. Biometals 2018, 31: 715–735.CrossRefPubMedGoogle Scholar
  2. 2.
    Chan CS, Gertler TS, Surmeier DJ. Calcium homeostasis, selective vulnerability and Parkinson’s disease. Trends Neurosci 2009, 32: 249–256.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ju C, Hou L, Sun F, Zhang L, Zhang Z, Gao H, et al. Anti-oxidation and antiapoptotic effects of chondroitin sulfate on 6-Hydroxydopamine-induced injury through the up-regulation of Nrf2 and inhibition of mitochondria-mediated pathway. Neurochem Res 2015, 40: 1509–1519.CrossRefPubMedGoogle Scholar
  4. 4.
    Liu Q, Xu Y, Wan W, Ma Z. An unexpected improvement in spatial learning and memory ability in alpha-synuclein A53T transgenic mice. J Neural Transm (Vienna) 2018, 125: 203–210.CrossRefGoogle Scholar
  5. 5.
    McNaught KS, Perl DP, Brownell AL, Olanow CW. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol 2004, 56: 149–162.CrossRefPubMedGoogle Scholar
  6. 6.
    Xue Y, Yang YT, Liu HY, Chen WF, Chen AQ, Sheng Q, et al. Orexin-A increases the activity of globus pallidus neurons in both normal and parkinsonian rats. Eur J Neurosci 2016, 44: 2247–2257.CrossRefPubMedGoogle Scholar
  7. 7.
    Berg D, Hochstrasser H. Iron metabolism in Parkinsonian syndromes. Mov Disord 2006, 21: 1299–1310.CrossRefPubMedGoogle Scholar
  8. 8.
    Guan X, Xu X, Zhang M. Region-specific iron measured by MRI as a biomarker for Parkinson’s disease. Neurosci Bull 2017, 33: 561–567.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Song N, Xie J. Iron, dopamine, and alpha-synuclein interactions in at-risk dopaminergic neurons in Parkinson’s disease. Neurosci Bull 2018, 34: 382–384.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wang QM, Xu YY, Liu S, Ma ZG. Isradipine attenuates MPTP-induced dopamine neuron degeneration by inhibiting up-regulation of L-type calcium channels and iron accumulation in the substantia nigra of mice. Oncotarget 2017, 8: 47284–47295.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Greminger AR, Mayer-Proschel M. Identifying the threshold of iron deficiency in the central nervous system of the rat by the auditory brainstem response. ASN Neuro 2015, 7.Google Scholar
  12. 12.
    Hidalgo C, Nunez MT. Calcium, iron and neuronal function. IUBMB Life 2007, 59: 280–285.CrossRefPubMedGoogle Scholar
  13. 13.
    Gao X, Campian JL, Qian M, Sun XF, Eaton JW. Mitochondrial DNA damage in iron overload. J Biol Chem 2009, 284: 4767–4775.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Horowitz MP, Greenamyre JT. Mitochondrial iron metabolism and its role in neurodegeneration. J Alzheimers Dis 2010, 20 Suppl 2: S551–S568.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kristinsson J, Snaedal J, Torsdottir G, Johannesson T. Ceruloplasmin and iron in Alzheimer’s disease and Parkinson’s disease: a synopsis of recent studies. Neuropsychiatr Dis Treat 2012, 8: 515–521.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Martin WR, Wieler M, Gee M. Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology 2008, 70: 1411–1417.CrossRefPubMedGoogle Scholar
  17. 17.
    Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, et al. ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 2007, 447: 1081–1086.CrossRefPubMedGoogle Scholar
  18. 18.
    Ilijic E, Guzman JN, Surmeier DJ. The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson’s disease. Neurobiol Dis 2011, 43: 364–371.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kupsch A, Gerlach M, Pupeter SC, Sautter J, Dirr A, Arnold G, et al. Pretreatment with nimodipine prevents MPTP-induced neurotoxicity at the nigral, but not at the striatal level in mice. Neuroreport 1995, 6: 621–625.CrossRefPubMedGoogle Scholar
  20. 20.
    Surmeier DJ, Guzman JN, Sanchez-Padilla J. Calcium, cellular aging, and selective neuronal vulnerability in Parkinson’s disease. Cell Calcium 2010, 47: 175–182.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Berger SM, Bartsch D. The role of L-type voltage-gated calcium channels Cav1.2 and Cav1.3 in normal and pathological brain function. Cell Tissue Res 2014, 357: 463–476.CrossRefPubMedGoogle Scholar
  22. 22.
    Lee YC, Lin CH, Wu RM, Lin JW, Chang CH, Lai MS. Antihypertensive agents and risk of Parkinson’s disease: a nationwide cohort study. PLoS One 2014, 9: e98961.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Oudit GY, Sun H, Trivieri MG, Koch SE, Dawood F, Ackerley C, et al. L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med 2003, 9: 1187–1194.CrossRefPubMedGoogle Scholar
  24. 24.
    Gaasch JA, Geldenhuys WJ, Lockman PR, Allen DD, Van der Schyf CJ. Voltage-gated calcium channels provide an alternate route for iron uptake in neuronal cell cultures. Neurochem Res 2007, 32: 1686–1693.CrossRefPubMedGoogle Scholar
  25. 25.
    Ma Z, Zhou Y, Xie J. Nifedipine prevents iron accumulation and reverses iron-overload-induced dopamine neuron degeneration in the substantia nigra of rats. Neurotox Res 2012, 22: 274–279.CrossRefPubMedGoogle Scholar
  26. 26.
    Lee DG, Park J, Lee HS, Lee SR, Lee DS. Iron overload-induced calcium signals modulate mitochondrial fragmentation in HT-22 hippocampal neuron cells. Toxicology 2016, 365: 17–24.CrossRefPubMedGoogle Scholar
  27. 27.
    McNaught KS, Mytilineou C, Jnobaptiste R, Yabut J, Shashidharan P, Jennert P, et al. Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J Neurochem 2002, 81: 301–306.CrossRefPubMedGoogle Scholar
  28. 28.
    Pardo B, Paino CL, Casarejos MJ, Mena MA. Neuronal-enriched cultures from embryonic rat ventral mesencephalon for pharmacological studies of dopamine neurons. Brain Res Brain Res Protoc 1997, 1: 127–132.CrossRefPubMedGoogle Scholar
  29. 29.
    Sanelli T, Ge W, Leystra-Lantz C, Strong MJ. Calcium mediated excitotoxicity in neurofilament aggregate-bearing neurons in vitro is NMDA receptor dependant. J Neurol Sci 2007, 256: 39–51.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhang S, Wang J, Song N, Xie J, Jiang H. Up-regulation of divalent metal transporter 1 is involved in 1-methyl-4-phenylpyridinium (MPP(+))-induced apoptosis in MES23.5 cells. Neurobiol Aging 2009, 30: 1466–1476.CrossRefPubMedGoogle Scholar
  31. 31.
    Wetli HA, Buckett PD, Wessling-Resnick M. Small-molecule screening identifies the selanazal drug ebselen as a potent inhibitor of DMT1-mediated iron uptake. Chem Biol 2006, 13: 965–972.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Jiang H, Song N, Xu H, Zhang S, Wang J, Xie J. Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent. Cell Res 2010, 20: 345–356.CrossRefPubMedGoogle Scholar
  33. 33.
    Youdim MB, Stephenson G, Ben Shachar D. Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann N Y Acad Sci 2004, 1012: 306–325.CrossRefPubMedGoogle Scholar
  34. 34.
    Umbreit JN, Conrad ME, Moore EG, Latour LF. Iron absorption and cellular transport: the mobilferrin/paraferritin paradigm. Semin Hematol 1998, 35: 13–26.PubMedGoogle Scholar
  35. 35.
    Xu HM, Jiang H, Wang J, Luo B, Xie JX. Over-expressed human divalent metal transporter 1 is involved in iron accumulation in MES23.5 cells. Neurochem Int 2008, 52: 1044–1051.CrossRefPubMedGoogle Scholar
  36. 36.
    Faucheux BA, Herrero MT, Villares J, Levy R, Javoy-Agid F, Obeso JA, et al. Autoradiographic localization and density of [125I]ferrotransferrin binding sites in the basal ganglia of control subjects, patients with Parkinson’s disease and MPTP-lesioned monkeys. Brain Res 1995, 691: 115–124.CrossRefPubMedGoogle Scholar
  37. 37.
    Song N, Jiang H, Wang J, Xie JX. Divalent metal transporter 1 up-regulation is involved in the 6-hydroxydopamine-induced ferrous iron influx. J Neurosci Res 2007, 85: 3118–3126.CrossRefPubMedGoogle Scholar
  38. 38.
    Bostanci MO, Bagirici F. Blocking of L-type calcium channels protects hippocampal and nigral neurons against iron neurotoxicity. The role of L-type calcium channels in iron-induced neurotoxicity. Int J Neurosci 2013, 123: 876–882.CrossRefPubMedGoogle Scholar
  39. 39.
    Lockman JA, Geldenhuys WJ, Bohn KA, Desilva SF, Allen DD, Van der Schyf CJ. Differential effect of nimodipine in attenuating iron-induced toxicity in brain- and blood-brain barrier-associated cell types. Neurochem Res 2012, 37: 134–142.CrossRefPubMedGoogle Scholar
  40. 40.
    Tsushima RG, Wickenden AD, Bouchard RA, Oudit GY, Liu PP, Backx PH. Modulation of iron uptake in heart by L-type Ca2+ channel modifiers: possible implications in iron overload. Circ Res 1999, 84: 1302–1309.CrossRefPubMedGoogle Scholar
  41. 41.
    Guzman JN, Ilijic E, Yang B, Sanchez-Padilla J, Wokosin D, Galtieri D, et al. Systemic isradipine treatment diminishes calcium-dependent mitochondrial oxidant stress. J Clin Invest 2018, 128: 2266–2280.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Guzman JN, Sanchez-Padilla J, Chan CS, Surmeier DJ. Robust pacemaking in substantia nigra dopaminergic neurons. J Neurosci 2009, 29: 11011–11019.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lin H, Li HF, Lian WS, Chen HH, Lan YF, Lai PF, et al. Thromboxane A2 mediates iron-overload cardiomyopathy in mice through calcineurin-nuclear factor of activated T cells signaling pathway. Circ J 2013, 77: 2586–2595.CrossRefPubMedGoogle Scholar
  44. 44.
    Pelizzoni I, Macco R, Morini MF, Zacchetti D, Grohovaz F, Codazzi F. Iron handling in hippocampal neurons: activity-dependent iron entry and mitochondria-mediated neurotoxicity. Aging Cell 2011, 10: 172–183.CrossRefPubMedGoogle Scholar
  45. 45.
    Sanmartin CD, Paula-Lima AC, Garcia A, Barattini P, Hartel S, Nunez MT, et al. Ryanodine receptor-mediated Ca(2+) release underlies iron-induced mitochondrial fission and stimulates mitochondrial Ca(2+) uptake in primary hippocampal neurons. Front Mol Neurosci 2014, 7: 13.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Zima AV, Blatter LA. Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 2006, 71: 310–321.CrossRefPubMedGoogle Scholar
  47. 47.
    Munoz P, Humeres A, Elgueta C, Kirkwood A, Hidalgo C, Nunez MT. Iron mediates N-methyl-D-aspartate receptor-dependent stimulation of calcium-induced pathways and hippocampal synaptic plasticity. J Biol Chem 2011, 286: 13382–13392.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS 2019

Authors and Affiliations

  1. 1.Department of Physiology, School of Basic MedicineQingdao UniversityQingdaoChina
  2. 2.Institute of Brain Science and DisordersQingdao UniversityQingdaoChina

Personalised recommendations