Neuroscience Bulletin

, Volume 35, Issue 5, pp 889–900 | Cite as

Poly-PR in C9ORF72-Related Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Causes Neurotoxicity by Clathrin-Dependent Endocytosis

  • Rui Wang
  • Xingyun Xu
  • Zongbing Hao
  • Shun Zhang
  • Dan Wu
  • Hongyang Sun
  • Chenchen Mu
  • Haigang Ren
  • Guanghui WangEmail author
Original Article


GGGGCC repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). It has been reported that hexanucleotide repeat expansions in C9ORF72 produce five dipeptide repeat (DPR) proteins by an unconventional repeat-associated non-ATG (RAN) translation. Within the five DPR proteins, poly-PR and poly-GR that contain arginine are more toxic than the other DPRs (poly-GA, poly-GP, and poly-PA). Here, we demonstrated that poly-PR peptides transferred into cells by endocytosis in a clathrin-dependent manner, leading to endoplasmic reticulum stress and cell death. In SH-SY5Y cells and primary cortical neurons, poly-PR activated JUN amino-terminal kinase (JNK) and increased the levels of p53 and Bax. The uptake of poly-PR peptides by cells was significantly inhibited by knockdown of clathrin or by chlorpromazine, an inhibitor that blocks clathrin-mediated endocytosis. Inhibition of clathrin-dependent endocytosis by chlorpromazine significantly blocked the transfer of poly-PR peptides into cells, and attenuated poly-PR-induced JNK activation and cell death. Our data revealed that the uptake of poly-PR undergoes clathrin-dependent endocytosis and blockade of this process prevents the toxic effects of synthetic poly-PR peptides.


Amyotrophic lateral sclerosis C9ORF72 Poly-PR Clathrin ER stress 



This work was supported by the National Natural Science Foundation of China (81761148024 and 31871023), the National Key Scientific R&D Program of China (2016YFC1306000), Suzhou Clinical Research Center of Neurological Disease (Szzx201503), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

Supplementary material

12264_2019_395_MOESM1_ESM.pdf (97 kb)
Supplementary material 1 (PDF 96 kb)


  1. 1.
    Taylor JP, Brown RH, Jr., Cleveland DW. Decoding ALS: from genes to mechanism. Nature 2016, 539: 197–206.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wu D, Hao Z, Ren H, Wang G. Loss of VAPB Regulates Autophagy in a Beclin 1-Dependent Manner. Neurosci Bull 2018, 34: 10371046.CrossRefPubMedGoogle Scholar
  3. 3.
    DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011, 72: 245256.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011, 72: 257268.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gendron TF, Bieniek KF, Zhang YJ, Jansen-West K, Ash PE, Caulfield T, et al. Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol 2013, 126: 829844.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mori K, Arzberger T, Grasser FA, Gijselinck I, May S, Rentzsch K, et al. Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol 2013, 126: 881893.CrossRefPubMedGoogle Scholar
  7. 7.
    Zu T, Liu Y, Banez-Coronel M, Reid T, Pletnikova O, Lewis J, et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl Acad Sci U S A 2013, 110: E49684977.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ash PE, Bieniek KF, Gendron TF, Caulfield T, Lin WL, Dejesus-Hernandez M, et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 2013, 77: 639646.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mizielinska S, Gronke S, Niccoli T, Ridler CE, Clayton EL, Devoy A, et al. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 2014, 345: 11921194.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kwon I, Xiang S, Kato M, Wu L, Theodoropoulos P, Wang T, et al. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 2014, 345: 11391145.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wen X, Tan W, Westergard T, Krishnamurthy K, Markandaiah SS, Shi Y, et al. Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron 2014, 84: 12131225.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jovicic A, Mertens J, Boeynaems S, Bogaert E, Chai N, Yamada SB, et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci 2015, 18: 12261229.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Boeynaems S, Bogaert E, Michiels E, Gijselinck I, Sieben A, Jovicic A, et al. Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD. Sci Rep 2016, 6: 20877.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tao Z, Wang H, Xia Q, Li K, Li K, Jiang X, et al. Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity. Hum Mol Genet 2015, 24: 24262441.CrossRefPubMedGoogle Scholar
  15. 15.
    Lee KH, Zhang P, Kim HJ, Mitrea DM, Sarkar M, Freibaum BD, et al. C9orf72 Dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 2016, 167: 774788 e717.Google Scholar
  16. 16.
    Lopez-Gonzalez R, Lu Y, Gendron TF, Karydas A, Tran H, Yang D, et al. Poly(GR) in C9ORF72-Related ALS/FTD Compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons. Neuron 2016, 92: 383391.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lin Y, Mori E, Kato M, Xiang S, Wu L, Kwon I, et al. Toxic PR Poly-dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers. Cell 2016, 167: 789802 e712.Google Scholar
  18. 18.
    Shi KY, Mori E, Nizami ZF, Lin Y, Kato M, Xiang S, et al. Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export. Proc Natl Acad Sci U S A 2017, 114: E1111E1117.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Boeynaems S, Bogaert E, Kovacs D, Konijnenberg A, Timmerman E, Volkov A, et al. Phase separation of C9orf72 dipeptide repeats perturbs stress granule dynamics. Mol Cell 2017, 65: 10441055 e1045.Google Scholar
  20. 20.
    Westergard T, Jensen BK, Wen X, Cai J, Kropf E, Iacovitti L, et al. Cell-to-cell transmission of dipeptide repeat proteins linked to C9orf72-ALS/FTD. Cell Rep 2016, 17: 645652.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yin S, Lopez-Gonzalez R, Kunz RC, Gangopadhyay J, Borufka C, Gygi SP, et al. Evidence that C9ORF72 dipeptide repeat proteins associate with U2 snRNP to cause mis-splicing in ALS/FTD patients. Cell Rep 2017, 19: 22442256.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kanekura K, Yagi T, Cammack AJ, Mahadevan J, Kuroda M, Harms MB, et al. Poly-dipeptides encoded by the C9ORF72 repeats block global protein translation. Hum Mol Genet 2016, 25: 18031813.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hetz C, Saxena S. ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol 2017, 13: 477491.CrossRefPubMedGoogle Scholar
  24. 24.
    Medinas DB, Valenzuela V, Hetz C. Proteostasis disturbance in amyotrophic lateral sclerosis. Hum Mol Genet 2017, 26: R91R104.CrossRefPubMedGoogle Scholar
  25. 25.
    Rozas P, Bargsted L, Martinez F, Hetz C, Medinas DB. The ER proteostasis network in ALS: Determining the differential motoneuron vulnerability. Neurosci Lett 2017, 636: 915.CrossRefPubMedGoogle Scholar
  26. 26.
    Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 2012, 13: 89102.CrossRefPubMedGoogle Scholar
  27. 27.
    Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011, 334: 10811086.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hetz C, Mollereau B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 2014, 15: 233249.CrossRefPubMedGoogle Scholar
  29. 29.
    Hetz C, Chevet E, Oakes SA. Proteostasis control by the unfolded protein response. Nat Cell Biol 2015, 17: 829838.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hetz C, Papa FR. The unfolded protein response and cell fate control. Mol Cell 2018, 69: 169181.CrossRefPubMedGoogle Scholar
  31. 31.
    Lee S, Shang Y, Redmond SA, Urisman A, Tang AA, Li KH, et al. Activation of HIPK2 promotes ER stress-mediated neurodegeneration in amyotrophic lateral sclerosis. Neuron 2016, 91: 4155.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bhinge A, Namboori SC, Zhang X, VanDongen AMJ, Stanton LW. Genetic Correction of SOD1 mutant iPSCs reveals ERK and JNK activated AP1 as a Driver of neurodegeneration in amyotrophic lateral sclerosis. Stem Cell Reports 2017, 8: 856869.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kikuchi H, Almer G, Yamashita S, Guegan C, Nagai M, Xu Z, et al. Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc Natl Acad Sci U S A 2006, 103: 60256030.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kiskinis E, Sandoe J, Williams LA, Boulting GL, Moccia R, Wainger BJ, et al. Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell 2014, 14: 781795.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Dafinca R, Scaber J, Ababneh N, Lalic T, Weir G, Christian H, et al. C9orf72 hexanucleotide expansions are associated with altered endoplasmic reticulum calcium homeostasis and stress granule formation in induced pluripotent stem cell-derived neurons from patients with amyotrophic lateral sclerosis and frontotemporal dementia. Stem Cells 2016, 34: 20632078.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhang YJ, Jansen-West K, Xu YF, Gendron TF, Bieniek KF, Lin WL, et al. Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol 2014, 128: 505524.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 2009, 10: 597608.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kumari S, Mg S, Mayor S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res 2010, 20: 256275.CrossRefPubMedGoogle Scholar
  39. 39.
    McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2011, 12: 517533.CrossRefPubMedGoogle Scholar
  40. 40.
    Xia Q, Hu Q, Wang H, Yang H, Gao F, Ren H, et al. Induction of COX-2-PGE2 synthesis by activation of the MAPK/ERK pathway contributes to neuronal death triggered by TDP-43-depleted microglia. Cell Death Dis 2015, 6: e1702.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chen D, Li YP, Yu YX, Zhou T, Liu C, Fei EK, et al. Dendritic cell nuclear protein-1 regulates melatonin biosynthesis by binding to BMAL1 and inhibiting the transcription of N-acetyltransferase in C6 cells. Acta Pharmacol Sin 2018, 39: 597606.CrossRefPubMedGoogle Scholar
  42. 42.
    Fu K, Wang Y, Guo D, Wang G, Ren H. Familial Parkinson’s disease-associated L166P mutant DJ-1 is cleaved by mitochondrial serine protease Omi/HtrA2. Neurosci Bull 2017, 33: 685694.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Guo DK, Zhu Y, Sun HY, Xu XY, Zhang S, Hao ZB, et al. Pharmacological activation of REV-ERBalpha represses LPS-induced microglial activation through the NF-kappaB pathway. Acta Pharmacol Sin 2018.Google Scholar
  44. 44.
    Yumoto R, Nishikawa H, Okamoto M, Katayama H, Nagai J, Takano M. Clathrin-mediated endocytosis of FITC-albumin in alveolar type II epithelial cell line RLE-6TN. Am J Physiol Lung Cell Mol Physiol 2006, 290: L946955.CrossRefPubMedGoogle Scholar
  45. 45.
    Wang LH, Rothberg KG, Anderson RG. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 1993, 123: 11071117.CrossRefPubMedGoogle Scholar
  46. 46.
    Nabi IR, Le PU. Caveolae/raft-dependent endocytosis. J Cell Biol 2003, 161: 673677.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ikehata M, Yumoto R, Nakamura K, Nagai J, Takano M. Comparison of albumin uptake in rat alveolar type II and type I-like epithelial cells in primary culture. Pharm Res 2008, 25: 913922.CrossRefPubMedGoogle Scholar
  48. 48.
    Nakase I, Niwa M, Takeuchi T, Sonomura K, Kawabata N, Koike Y, et al. Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol Ther 2004, 10: 10111022.CrossRefPubMedGoogle Scholar
  49. 49.
    Sovolyova N, Healy S, Samali A, Logue SE. Stressed to death - mechanisms of ER stress-induced cell death. Biol Chem 2014, 395: 113.CrossRefPubMedGoogle Scholar
  50. 50.
    Harris JA, Devidze N, Verret L, Ho K, Halabisky B, Thwin MT, et al. Transsynaptic progression of amyloid-beta-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron 2010, 68: 428441.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Nath S, Agholme L, Kurudenkandy FR, Granseth B, Marcusson J, Hallbeck M. Spreading of neurodegenerative pathology via neuron-to-neuron transmission of beta-amyloid. J Neurosci 2012, 32: 87678777.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, et al. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 2006, 313: 17811784.CrossRefPubMedGoogle Scholar
  53. 53.
    Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A 2009, 106: 1301013015.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kanouchi T, Ohkubo T, Yokota T. Can regional spreading of amyotrophic lateral sclerosis motor symptoms be explained by prion-like propagation? J Neurol Neurosurg Psychiatry 2012, 83: 739745.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Feiler MS, Strobel B, Freischmidt A, Helferich AM, Kappel J, Brewer BM, et al. TDP-43 is intercellularly transmitted across axon terminals. J Cell Biol 2015, 211: 897911.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ren PH, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 2009, 11: 219225.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Silverman JM, Fernando SM, Grad LI, Hill AF, Turner BJ, Yerbury JJ, et al. Disease mechanisms in ALS: Misfolded SOD1 transferred through exosome-dependent and exosome-independent pathways. Cell Mol Neurobiol 2016, 36: 377381.CrossRefPubMedGoogle Scholar
  58. 58.
    Wu X, Zheng T, Zhang B. Exosomes in Parkinson’s disease. Neurosci Bull 2017, 33: 331338.CrossRefPubMedGoogle Scholar
  59. 59.
    Mousavi SA, Malerod L, Berg T, Kjeken R. Clathrin-dependent endocytosis. Biochem J 2004, 377: 116.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Dominguez-Prieto M, Velasco A, Tabernero A, Medina JM. Endocytosis and transcytosis of amyloid-beta peptides by astrocytes: a possible mechanism for amyloid-beta clearance in Alzheimer’s disease. J Alzheimers Dis 2018, 65: 11091124.CrossRefPubMedGoogle Scholar
  61. 61.
    Oh SH, Kim HN, Park HJ, Shin JY, Bae EJ, Sunwoo MK, et al. Mesenchymal stem cells inhibit transmission of alpha-synuclein by modulating clathrin-mediated endocytosis in a Parkinsonian model. Cell Rep 2016, 14: 835849.CrossRefPubMedGoogle Scholar
  62. 62.
    Zhang YJ, Gendron TF, Ebbert MTW, O’Raw AD, Yue M, Jansen-West K, et al. Poly(GR) impairs protein translation and stress granule dynamics in C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. Nat Med 2018, 24: 11361142.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kramer NJ, Haney MS, Morgens DW, Jovicic A, Couthouis J, Li A, et al. CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity. Nat Genet 2018, 50: 603612.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Suzuki H, Shibagaki Y, Hattori S, Matsuoka M. The proline-arginine repeat protein linked to C9-ALS/FTD causes neuronal toxicity by inhibiting the DEAD-box RNA helicase-mediated ribosome biogenesis. Cell Death Dis 2018, 9: 975.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000, 403: 98103.CrossRefPubMedGoogle Scholar
  66. 66.
    Bellucci A, Navarria L, Zaltieri M, Falarti E, Bodei S, Sigala S, et al. Induction of the unfolded protein response by alpha-synuclein in experimental models of Parkinson’s disease. J Neurochem 2011, 116: 588605.CrossRefPubMedGoogle Scholar
  67. 67.
    Credle JJ, Forcelli PA, Delannoy M, Oaks AW, Permaul E, Berry DL, et al. alpha-Synuclein-mediated inhibition of ATF6 processing into COPII vesicles disrupts UPR signaling in Parkinson’s disease. Neurobiol Dis 2015, 76: 112125.CrossRefPubMedGoogle Scholar
  68. 68.
    Nishitoh H, Kadowaki H, Nagai A, Maruyama T, Yokota T, Fukutomi H, et al. ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev 2008, 22: 14511464.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Buschmann T, Yin Z, Bhoumik A, Ronai Z. Amino-terminal-derived JNK fragment alters expression and activity of c-Jun, ATF2, and p53 and increases H2O2-induced cell death. J Biol Chem 2000, 275: 1659016596.CrossRefPubMedGoogle Scholar
  70. 70.
    Mandal M, Olson DJ, Sharma T, Vadlamudi RK, Kumar R. Butyric acid induces apoptosis by up-regulating Bax expression via stimulation of the c-Jun N-terminal kinase/activation protein-1 pathway in human colon cancer cells. Gastroenterology 2001, 120: 7178.CrossRefPubMedGoogle Scholar
  71. 71.
    Wang W, Wen D, Duan W, Yin J, Cui C, Wang Y, et al. Systemic administration of scAAV9-IGF1 extends survival in SOD1(G93A) ALS mice via inhibiting p38 MAPK and the JNK-mediated apoptosis pathway. Brain Res Bull 2018, 139: 203210.CrossRefPubMedGoogle Scholar
  72. 72.
    He H, Wang S, Tian J, Chen L, Zhang W, Zhao J, et al. Protective effects of 2,3,5,4’-tetrahydroxystilbene-2-O-beta-D-glucoside in the MPTP-induced mouse model of Parkinson’s disease: Involvement of reactive oxygen species-mediated JNK, P38 and mitochondrial pathways. Eur J Pharmacol 2015, 767: 175182.CrossRefPubMedGoogle Scholar
  73. 73.
    Peng J, Andersen JK. The role of c-Jun N-terminal kinase (JNK) in Parkinson’s disease. IUBMB Life 2003, 55: 267271.CrossRefPubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS 2019

Authors and Affiliations

  • Rui Wang
    • 1
  • Xingyun Xu
    • 1
  • Zongbing Hao
    • 1
  • Shun Zhang
    • 1
  • Dan Wu
    • 1
  • Hongyang Sun
    • 1
  • Chenchen Mu
    • 1
  • Haigang Ren
    • 1
  • Guanghui Wang
    • 1
    Email author
  1. 1.Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina

Personalised recommendations