Advertisement

Neuroscience Bulletin

, Volume 35, Issue 6, pp 1058–1072 | Cite as

Recent Advances in the Genetic Dissection of Neural Circuits in Drosophila

  • Chao GuoEmail author
  • Yufeng Pan
  • Zhefeng Gong
Review
  • 623 Downloads

Abstract

Nervous systems endow animals with cognition and behavior. To understand how nervous systems control behavior, neural circuits mediating distinct functions need to be identified and characterized. With superior genetic manipulability, Drosophila is a model organism at the leading edge of neural circuit analysis. We briefly introduce the state-of-the-art genetic tools that permit precise labeling of neurons and their interconnectivity and investigating what is happening in the brain of a behaving animal and manipulating neurons to determine how behaviors are affected. Brain-wide wiring diagrams, created by light and electron microscopy, bring neural circuit analysis to a new level and scale. Studies enabled by these tools advances our understanding of the nervous system in relation to cognition and behavior.

Keywords

Drosophila Neural circuit Neuroanatomy Neurogenetics Systems neuroscience 

Notes

Acknowledgements

This review was supported by the National Natural Science Foundation of China (6531000063, 31571093, 31622028, 31471063, and 31671074), the Science Foundation of Jiangsu Province of China (BK20160025), and Fundamental Research Funds for the Central Universities, China (2242016R20028 and 2017FZA7003).

Conflict of interest

All authors claim that there are no conflicts of interest.

References

  1. 1.
    Rubin GM, Spradling AC. Genetic transformation of Drosophila with transposable element vectors. Science 1982, 218: 348–353.PubMedPubMedCentralGoogle Scholar
  2. 2.
    O’Kane CJ, Gehring WJ. Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci USA 1987, 84: 9123–9127.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Brand AH, Perrimon N. Targeted gene-expression as a means of altering cell fates and generating dominant phenotypes. Development 1993, 118: 401–415.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Manseau L, Baradaran A, Brower D, Budhu A, Elefant F, Phan H, et al. GAL4 enhancer traps expressed in the embryo, larval brain, imaginal discs, and ovary of Drosophila. Dev Dyn 1997, 209: 310–322.PubMedGoogle Scholar
  5. 5.
    Spradling AC, Stern D, Beaton A, Rhem EJ, Laverty T, Mozden N, et al. The Berkeley Drosophila Genome Project gene disruption project: single P-element insertions mutating 25% of vital Drosophila genes. Genetics 1999, 153: 135–177.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Hayashi S, Ito K, Sado Y, Taniguchi M, Akimoto A, Takeuchi H, et al. GETDB, a database compiling expression patterns and molecular locations of a collection of GAL4 enhancer traps. Genesis 2002, 34: 58–61.PubMedGoogle Scholar
  7. 7.
    Pfeiffer BD, Jenett A, Hammonds AS, Ngo TT, Misra S, Murphy C, et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci USA 2008, 105: 9715–9720.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Pfeiffer BD, Ngo TT, Hibbard KL, Murphy C, Jenett A, Truman JW, et al. Refinement of tools for targeted gene expression in Drosophila. Genetics 2010, 186: 735–755.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Tirian L, Dickson B. The VT GAL4, LexA, and split-GAL4 driver line collections for targeted expression in the Drosophila nervous system. bioRxiv 2017.  https://doi.org/10.1101/198648.CrossRefGoogle Scholar
  10. 10.
    Lai SL, Lee T. Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 2006, 9: 703–709.PubMedGoogle Scholar
  11. 11.
    Potter CJ, Tasic B, Russler EV, Liang L, Luo L. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 2010, 141: 536–548.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Riabinina O, Luginbuhl D, Marr E, Liu S, Wu MN, Luo L, et al. Improved and expanded Q-system reagents for genetic manipulations. Nat Methods 2015, 12: 219–222.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Lee T, Luo L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 1999, 22: 451–461.PubMedGoogle Scholar
  14. 14.
    Yang CH, Rumpf S, Xiang Y, Gordon MD, Song W, Jan LY, et al. Control of the postmating behavioral switch in Drosophila females by internal sensory neurons. Neuron 2009, 61: 519–526.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Clyne JD, Miesenbock G. Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell 2008, 133: 354–363.PubMedGoogle Scholar
  16. 16.
    McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL. Spatiotemporal rescue of memory dysfunction in Drosophila. Science 2003, 302: 1765–1768.PubMedGoogle Scholar
  17. 17.
    Luan H, Peabody NC, Vinson CR, White BH. Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 2006, 52: 425–436.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Dionne H, Hibbard KL, Cavallaro A, Kao JC, Rubin GM. Genetic reagents for making split-GAL4 lines in Drosophila. Genetics 2018, 209: 31–35.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Tuthill JC, Nern A, Holtz SL, Rubin GM, Reiser MB. Contributions of the 12 neuron classes in the fly lamina to motion vision. Neuron 2013, 79: 128–140.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Wu M, Nern A, Williamson WR, Morimoto MM, Reiser MB, Card GM, et al. Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs. Elife 2016, 5: e21022.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Aso Y, Sitaraman D, Ichinose T, Kaun KR, Vogt K, Belliart-Guerin G, et al. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. Elife 2014, 3: e04580.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang W, Guo C, Chen D, Peng Q, Pan Y. Hierarchical control of Drosophila sleep, courtship, and feeding behaviors by male-specific P1 Neurons. Neurosci Bull 2018, 34: 1105–1110.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Ting CY, Gu S, Guttikonda S, Lin TY, White BH, Lee CH. Focusing transgene expression in Drosophila by coupling GAL4 with a novel split-LexA expression system. Genetics 2011, 188: 229–233.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Dolan MJ, Luan H, Shropshire WC, Sutcliffe B, Cocanougher B, Scott RL, et al. Facilitating neuron-specific genetic manipulations in Drosophila melanogaster using a split GAL4 repressor. Genetics 2017, 206: 775–784.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Golic KG, Lindquist S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 1989, 59: 499–509.PubMedGoogle Scholar
  26. 26.
    Xu T, Rubin GM. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 1993, 117: 1223–1237.PubMedGoogle Scholar
  27. 27.
    Smith HK, Roberts IJ, Allen MJ, Connolly JB, Moffat KG, O’Kane CJ. Inducible ternary control of transgene expression and cell ablation in Drosophila. Dev Genes Evol 1996, 206: 14–24.PubMedGoogle Scholar
  28. 28.
    Asahina K, Watanabe K, Duistermars BJ, Hoopfer E, Gonzalez CR, Eyjolfsdottir EA, et al. Tachykinin-expressing neurons control male-specific aggressive arousal in Drosophila. Cell 2014, 156: 221–235.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Rezaval C, Pattnaik S, Pavlou HJ, Nojima T, Bruggemeier B, D’Souza LAD, et al. Activation of latent courtship circuitry in the brain of Drosophila females induces male-like behaviors. Curr Biol 2016, 26: 2508–2515.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Koganezawa M, Kimura K, Yamamoto D. The neural circuitry that functions as a switch for courtship versus aggression in Drosophila males. Curr Biol 2016, 26: 1395–1403.PubMedGoogle Scholar
  31. 31.
    Siegal ML, Hartl DL. Transgene coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics 1996, 144: 715–726.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Nern A, Pfeiffer BD, Svoboda K, Rubin GM. Multiple new site-specific recombinases for use in manipulating animal genomes. Proc Natl Acad Sci U S A 2011, 108: 14198–14203.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Kohatsu S, Koganezawa M, Yamamoto D. Female contact activates male-specific interneurons that trigger stereotypic courtship behavior in Drosophila. Neuron 2011, 69: 498–508.PubMedGoogle Scholar
  34. 34.
    Bohm RA, Welch WP, Goodnight LK, Cox LW, Henry LG, Gunter TC, et al. A genetic mosaic approach for neural circuit mapping in Drosophila. Proc Natl Acad Sci U S A 2010, 107: 16378–16383.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Gohl DM, Silies MA, Gao XJ, Bhalerao S, Luongo FJ, Lin CC, et al. A versatile in vivo system for directed dissection of gene expression patterns. Nat Methods 2011, 8: 231–237.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Xie T, Ho MCW, Liu Q, Horiuchi W, Lin CC, Task D, et al. A genetic toolkit for dissecting dopamine circuit function in Drosophila. Cell Rep 2018, 23: 652–665.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Lin CC, Potter CJ. Editing transgenic DNA components by inducible gene replacement in Drosophila melanogaster. Genetics 2016, 203: 1613–1628.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Jenett A, Rubin GM, Ngo TT, Shepherd D, Murphy C, Dionne H, et al. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep 2012, 2: 991–1001.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Yeh E, Gustafson K, Boulianne GL. Green fluorescent protein as a vital marker and reporter of gene-expression in Drosophila. Proc Natl Acad Sci USA 1995, 92: 7036–7040.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 2004, 22: 1567–1572.PubMedGoogle Scholar
  41. 41.
    Shearin HK, Macdonald IS, Spector LP, Stowers RS. Hexameric GFP and mCherry reporters for the Drosophila GAL4, Q, and LexA transcription systems. Genetics 2014, 196: 951–960.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Verkhusha VV, Otsuna H, Awasaki T, Oda H, Tsukita S, Ito K. An enhanced mutant of red fluorescent protein DsRed for double labeling and developmental timer of neural fiber bundle formation. J Biol Chem 2001, 276: 29621–29624.PubMedGoogle Scholar
  43. 43.
    Barolo S, Castro B, Posakony JW. New Drosophila transgenic reporters: insulated P-element vectors expressing fast-maturing RFP. BioTechniques 2004, 36: 436-442.PubMedGoogle Scholar
  44. 44.
    Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 2002, 20: 87–90.PubMedGoogle Scholar
  45. 45.
    Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 2001, 276: 29188–29194.PubMedGoogle Scholar
  46. 46.
    Rizzo MA, Springer GH, Granada B, Piston DW. An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 2004, 22: 445–449.PubMedGoogle Scholar
  47. 47.
    Goedhart J, van Weeren L, Hink MA, Vischer NO, Jalink K, Gadella TW, Jr. Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nat Methods 2010, 7: 137–139.PubMedGoogle Scholar
  48. 48.
    Zhang YQ, Rodesch CK, Broadie K. Living synaptic vesicle marker: Synaptotagmin-GFP. Genesis 2002, 34: 142–145.PubMedGoogle Scholar
  49. 49.
    Nicolai LJ, Ramaekers A, Raemaekers T, Drozdzecki A, Mauss AS, Yan J, et al. Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila. Proc Natl Acad Sci U S A 2010, 107: 20553–20558.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Shiga Y, Tanaka-Matakatsu M, Hayashi S. A nuclear GFP beta-galactosidase fusion protein as a marker for morphogenesis in living Drosophila. Dev Growth Differ 1996, 38: 99–106.Google Scholar
  51. 51.
    Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 2007, 450: 56–62.Google Scholar
  52. 52.
    Hadjieconomou D, Rotkopf S, Alexandre C, Bell DM, Dickson BJ, Salecker I. Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nat Methods 2011, 8: 260–266.PubMedGoogle Scholar
  53. 53.
    Hampel S, Chung P, McKellar CE, Hall D, Looger LL, Simpson JH. Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat Methods 2011, 8: 253–259.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Nern A, Pfeiffer BD, Rubin GM. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc Natl Acad Sci U S A 2015, 112: E2967–E2976.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Wolff T, Rubin GM. Neuroarchitecture of the Drosophila central complex: A catalog of nodulus and asymmetrical body neurons and a revision of the protocerebral bridge catalog. J Comp Neurol 2018, 526: 2585–2611.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Nakai J, Ohkura M, Imoto K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 2001, 19: 137–141.PubMedGoogle Scholar
  57. 57.
    Wang JW, Wong AM, Flores J, Vosshall LB, Axel R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 2003, 112: 271–282.PubMedGoogle Scholar
  58. 58.
    Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 2013, 499: 295–300.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Cohn R, Morantte I, Ruta V. Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell 2015, 163: 1742–1755.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Thestrup T, Litzlbauer J, Bartholomaus I, Mues M, Russo L, Dana H, et al. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat Methods 2014, 11: 175–182.PubMedGoogle Scholar
  61. 61.
    Schnaitmann C, Haikala V, Abraham E, Oberhauser V, Thestrup T, Griesbeck O, et al. Color processing in the early visual system of Drosophila. Cell 2018, 172: 318–330.PubMedGoogle Scholar
  62. 62.
    Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, et al. An expanded palette of genetically encoded Ca2+ indicators. Science 2011, 333: 1888–1891.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Akerboom J, Carreras Calderon N, Tian L, Wabnig S, Prigge M, Tolo J, et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 2013, 6: 2.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP, et al. Sensitive red protein calcium indicators for imaging neural activity. Elife 2016, 5: e12727.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Guo F, Holla M, Diaz MM, Rosbash M. A circadian output circuit controls sleep-wake arousal in Drosophila. Neuron 2018, 100: 624–635.PubMedGoogle Scholar
  66. 66.
    Grover D, Katsuki T, Greenspan RJ. Flyception: imaging brain activity in freely walking fruit flies. Nat Methods 2016, 13: 569–572.PubMedGoogle Scholar
  67. 67.
    Fosque BF, Sun Y, Dana H, Yang CT, Ohyama T, Tadross MR, et al. Labeling of active neural circuits in vivo with designed calcium integrators. Science 2015, 347: 755–760.PubMedGoogle Scholar
  68. 68.
    Yadlapalli S, Jiang C, Bahle A, Reddy P, Meyhofer E, Shafer OT. Circadian clock neurons constantly monitor environmental temperature to set sleep timing. Nature 2018, 555: 98–102.PubMedGoogle Scholar
  69. 69.
    Bohra AA, Kallman BR, Reichert H, VijayRaghavan K. Identification of a single pair of interneurons for bitter taste processing in the Drosophila brain. Curr Biol 2018, 28: 847–858.PubMedGoogle Scholar
  70. 70.
    Pu Y, Palombo MMM, Shen P. Contribution of DA signaling to appetitive odor perception in a Drosophila model. Sci Rep 2018, 8: 5978.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Fei Y, Zhu D, Sun Y, Gong C, Huang S, Gong Z. Repeated failure in reward pursuit alters innate Drosophila larval behaviors. Neurosci Bull 2018, 34: 901–911.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Masuyama K, Zhang Y, Rao Y, Wang JW. Mapping neural circuits with activity-dependent nuclear import of a transcription factor. J Neurogenet 2012, 26: 89–102.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Gao XJ, Riabinina O, Li J, Potter CJ, Clandinin TR, Luo L. A transcriptional reporter of intracellular Ca2+ in Drosophila. Nat Neurosci 2015, 18: 917–925.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Li Q, Gong Z. Cold-sensing regulates Drosophila growth through insulin-producing cells. Nat Commun 2015, 6: 10083.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Jang YH, Chae HS, Kim YJ. Female-specific myoinhibitory peptide neurons regulate mating receptivity in Drosophila melanogaster. Nat Commun 2017, 8: 1630.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Guo F, Yu J, Jung HJ, Abruzzi KC, Luo W, Griffith LC, et al. Circadian neuron feedback controls the Drosophila sleep-activity profile. Nature 2016, 536: 292–297.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Guo F, Chen X, Rosbash M. Temporal calcium profiling of specific circadian neurons in freely moving flies. Proc Natl Acad Sci U S A 2017, 114: E8780–E8787.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Wilson RI, Turner GC, Laurent G. Transformation of olfactory representations in the Drosophila antennal lobe. Science 2004, 303: 366–370.PubMedGoogle Scholar
  79. 79.
    Maimon G, Straw AD, Dickinson MH. Active flight increases the gain of visual motion processing in Drosophila. Nat Neurosci 2010, 13: 393–399.PubMedGoogle Scholar
  80. 80.
    Cao G, Platisa J, Pieribone VA, Raccuglia D, Kunst M, Nitabach MN. Genetically targeted optical electrophysiology in intact neural circuits. Cell 2013, 154: 904–913.PubMedGoogle Scholar
  81. 81.
    St-Pierre F, Marshall JD, Yang Y, Gong Y, Schnitzer MJ, Lin MZ. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat Neurosci 2014, 17: 884–889.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Yang HH, St-Pierre F, Sun X, Ding X, Lin MZ, Clandinin TR. Subcellular imaging of voltage and calcium signals reveals neural processing in vivo. Cell 2016, 166: 245–257.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Gong Y, Wagner MJ, Zhong Li J, Schnitzer MJ. Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors. Nat Commun 2014, 5: 3674.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Aplin AC, Kaufman TC. Homeotic transformation of legs to mouthparts by proboscipedia expression in Drosophila imaginal discs. Mech Develop 1997, 62: 51–60.Google Scholar
  85. 85.
    Zhou L, Schnitzler A, Agapite J, Schwartz LM, Steller H, Nambu JR. Cooperative functions of the reaper and head involution defective genes in the programmed cell death of Drosophila central nervous system midline cells. Proc Natl Acad Sci U S A 1997, 94: 5131–5136.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Flood TF, Iguchi S, Gorczyca M, White B, Ito K, Yoshihara M. A single pair of interneurons commands the Drosophila feeding motor program. Nature 2013, 499: 83–87.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Keller A, Sweeney ST, Zars T, O’Kane CJ, Heisenberg M. Targeted expression of tetanus neurotoxin interferes with behavioral responses to sensory input in Drosophila. J Neurobiol 2002, 50: 221–233.PubMedGoogle Scholar
  88. 88.
    Kitamoto T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J Neurobiol 2001, 47: 81–92.PubMedGoogle Scholar
  89. 89.
    Nitabach MN, Wu Y, Sheeba V, Lemon WC, Strumbos J, Zelensky PK, et al. Electrical hyperexcitation of lateral ventral pacemaker neurons desynchronizes downstream circadian oscillators in the fly circadian circuit and induces multiple behavioral periods. J Neurosci 2006, 26: 479–489.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Baines RA, Uhler JP, Thompson A, Sweeney ST, Bate M. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J Neurosci 2001, 21: 1523–1531.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Nitabach MN, Blau J, Holmes TC. Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 2002, 109: 485–495.PubMedGoogle Scholar
  92. 92.
    Datta SR, Vasconcelos ML, Ruta V, Luo S, Wong A, Demir E, et al. The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 2008, 452: 473–477.PubMedGoogle Scholar
  93. 93.
    Ruta V, Datta SR, Vasconcelos ML, Freeland J, Looger LL, Axel R. A dimorphic pheromone circuit in Drosophila from sensory input to descending output. Nature 2010, 468: 686–690.PubMedGoogle Scholar
  94. 94.
    Rosenzweig M, Brennan KM, Tayler TD, Phelps PO, Patapoutian A, Garrity PA. The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev 2005, 19: 419–424.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Zhang W, Ge W, Wang Z. A toolbox for light control of Drosophila behaviors through Channelrhodopsin 2-mediated photoactivation of targeted neurons. Eur J Neurosci 2007, 26: 2405–2416.PubMedGoogle Scholar
  96. 96.
    Inagaki HK, Jung Y, Hoopfer ED, Wong AM, Mishra N, Lin JY, et al. Optogenetic control of Drosophila using a red-shifted Channelrhodopsin reveals experience-dependent influences on courtship. Nat Methods 2014, 11: 325–332.PubMedGoogle Scholar
  97. 97.
    Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, et al. Independent optical excitation of distinct neural populations. Nat Methods 2014, 11: 338–346.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, et al. Multimodal fast optical interrogation of neural circuitry. Nature 2007, 446: 633–639.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Inada K, Kohsaka H, Takasu E, Matsunaga T, Nose A. Optical dissection of neural circuits responsible for Drosophila larval locomotion with Halorhodopsin. PLoS One 2011, 6: e29019.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Doll CA, Broadie K. Activity-dependent FMRP requirements in development of the neural circuitry of learning and memory. Development 2015, 142: 1346–1356.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Mohammad F, Stewart JC, Ott S, Chlebikova K, Chua JY, Koh TW, et al. Optogenetic inhibition of behavior with anion Channelrhodopsins. Nat Methods 2017, 14: 271–274.PubMedGoogle Scholar
  102. 102.
    Lima SQ, Miesenbock G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell 2005, 121: 141–152.PubMedGoogle Scholar
  103. 103.
    Patterson GH, Lippincott-Schwartz J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 2002, 297: 1873–1877.PubMedGoogle Scholar
  104. 104.
    Sun Y, Nern A, Franconville R, Dana H, Schreiter ER, Looger LL, et al. Neural signatures of dynamic stimulus selection in Drosophila. Nat Neurosci 2017, 20: 1104–1113.PubMedGoogle Scholar
  105. 105.
    Talay M, Richman EB, Snell NJ, Hartmann GG, Fisher JD, Sorkac A, et al. Transsynaptic mapping of second-order taste neurons in flies by trans-Tango. Neuron 2017, 96: 783–795.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Lamaze A, Kratschmer P, Chen KF, Lowe S, Jepson JEC. A wake-promoting circadian output circuit in Drosophila. Curr Biol 2018, 28: 3098–3105.PubMedGoogle Scholar
  107. 107.
    Huang TH, Niesman P, Arasu D, Lee D, De La Cruz AL, Callejas A, et al. Tracing neuronal circuits in transgenic animals by transneuronal control of transcription (TRACT). Elife 2017, 6: e32027.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Gordon MD, Scott K. Motor control in a Drosophila taste circuit. Neuron 2009, 61: 373–384.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Fan P, Manoli DS, Ahmed OM, Chen Y, Agarwal N, Kwong S, et al. Genetic and neural mechanisms that inhibit Drosophila from mating with other species. Cell 2013, 154: 89–102.PubMedGoogle Scholar
  110. 110.
    Macpherson LJ, Zaharieva EE, Kearney PJ, Alpert MH, Lin TY, Turan Z, et al. Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation. Nat Commun 2015, 6: 10024.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Shearin HK, Quinn CD, Mackin RD, Macdonald IS, Stowers RS. t-GRASP, a targeted GRASP for assessing neuronal connectivity. J Neurosci Methods 2018, 306: 94–102.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Chen Y, Akin O, Nern A, Tsui CY, Pecot MY, Zipursky SL. Cell-type-specific labeling of synapses in vivo through synaptic tagging with recombination. Neuron 2014, 81: 280–293.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Ryan MD, Drew J. Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO J 1994, 13: 928–933.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Sugie A, Hakeda-Suzuki S, Suzuki E, Silies M, Shimozono M, Mohl C, et al. Molecular remodeling of the presynaptic active zone of Drosophila photoreceptors via activity-dependent feedback. Neuron 2015, 86: 711–725.PubMedGoogle Scholar
  115. 115.
    Liu S, Liu Q, Tabuchi M, Wu MN. Sleep drive is encoded by neural plastic changes in a dedicated Circuit. Cell 2016, 165: 1347–1360.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Zhang X, Li Q, Wang L, Liu ZJ, Zhong Y. Active protection: learning-activated Raf/MAPK activity protects labile memory from Rac1-independent forgetting. Neuron 2018, 98: 142–155.PubMedGoogle Scholar
  117. 117.
    Shirangi TR, Wong AM, Truman JW, Stern DL. Doublesex regulates the connectivity of a neural circuit controlling Drosophila male courtship song. Dev Cell 2016, 37: 533–544.PubMedGoogle Scholar
  118. 118.
    Felsenberg J, Barnstedt O, Cognigni P, Lin S, Waddell S. Re-evaluation of learned information in Drosophila. Nature 2017, 544: 240–244.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Watanabe K, Chiu H, Pfeiffer BD, Wong AM, Hoopfer ED, Rubin GM, et al. A circuit node that integrates convergent input from neuromodulatory and social behavior-promoting neurons to control aggression in Drosophila. Neuron 2017, 95: 1112–1128.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Green J, Adachi A, Shah KK, Hirokawa JD, Magani PS, Maimon G. A neural circuit architecture for angular integration in Drosophila. Nature 2017, 546: 101–106.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Klapoetke NC, Nern A, Peek MY, Rogers EM, Breads P, Rubin GM, et al. Ultra-selective looming detection from radial motion opponency. Nature 2017, 551: 237–241.PubMedGoogle Scholar
  122. 122.
    Chiang AS, Lin CY, Chuang CC, Chang HM, Hsieh CH, Yeh CW, et al. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr Biol 2011, 21: 1–11.PubMedGoogle Scholar
  123. 123.
    Shih CT, Sporns O, Yuan SL, Su TS, Lin YJ, Chuang CC, et al. Connectomics-based analysis of information flow in the Drosophila brain. Curr Biol 2015, 25: 1249–1258.PubMedGoogle Scholar
  124. 124.
    Lin CY, Chuang CC, Hua TE, Chen CC, Dickson BJ, Greenspan RJ, et al. A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. Cell Rep 2013, 3: 1739–1753.PubMedGoogle Scholar
  125. 125.
    Costa M, Manton JD, Ostrovsky AD, Prohaska S, Jefferis GS. NBLAST: rapid, sensitive comparison of neuronal structure and construction of neuron family databases. Neuron 2016, 91: 293–311.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Jeanne JM, Fisek M, Wilson RI. The organization of projections from olfactory glomeruli onto higher-order neurons. Neuron 2018, 98: 1198–1213.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Vogelstein JT, Park Y, Ohyama T, Kerr RA, Truman JW, Priebe CE, et al. Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning. Science 2014, 344: 386–392.PubMedGoogle Scholar
  128. 128.
    Robie AA, Hirokawa J, Edwards AW, Umayam LA, Lee A, Phillips ML, et al. Mapping the neural substrates of behavior. Cell 2017, 170: 393–406.PubMedGoogle Scholar
  129. 129.
    Briggman KL, Bock DD. Volume electron microscopy for neuronal circuit reconstruction. Curr Opin Neurobiol 2012, 22: 154–161.PubMedGoogle Scholar
  130. 130.
    Takemura SY, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, et al. A visual motion detection circuit suggested by Drosophila connectomics. Nature 2013, 500: 175–181.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Takemura SY. Connectome of the fly visual circuitry. Microscopy 2015, 64: 37–44.PubMedGoogle Scholar
  132. 132.
    Ohyama T, Schneider-Mizell CM, Fetter RD, Aleman JV, Franconville R, Rivera-Alba M, et al. A multilevel multimodal circuit enhances action selection in Drosophila. Nature 2015, 520: 633–639.PubMedGoogle Scholar
  133. 133.
    Berck ME, Khandelwal A, Claus L, Hernandez-Nunez L, Si G, Tabone CJ, et al. The wiring diagram of a glomerular olfactory system. Elife 2016, 5: e14859.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Takemura SY, Aso Y, Hige T, Wong A, Lu Z, Xu CS, et al. A connectome of a learning and memory center in the adult Drosophila brain. Elife 2017, 6: e26975.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Tobin WF, Wilson RI, Lee WA. Wiring variations that enable and constrain neural computation in a sensory microcircuit. Elife 2017, 6: e24838.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Zheng Z, Lauritzen JS, Perlman E, Robinson CG, Nichols M, Milkie D, et al. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 2018, 174: 730–743.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Bargmann CI. Beyond the connectome: how neuromodulators shape neural circuits. Bioessays 2012, 34: 458–465.PubMedGoogle Scholar
  138. 138.
    Hassenstein B, Reichardt W. Systemtheoretische analyse der zeit-, reihenfolgen- und vorzeichenauswertung bei der bewegungsperzeption des Rüsselkäfers chlorophanus. Zeitschrift für Naturforschung B 1956, 11: 513–524.Google Scholar
  139. 139.
    Clark DA, Bursztyn L, Horowitz MA, Schnitzer MJ, Clandinin TR. Defining the computational structure of the motion detector in Drosophila. Neuron 2011, 70: 1165–1177.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Kim SS, Rouault H, Druckmann S, Jayaraman V. Ring attractor dynamics in the Drosophila central brain. Science 2017, 356: 849–853.PubMedGoogle Scholar
  141. 141.
    Ito K, Shinomiya K, Ito M, Armstrong JD, Boyan G, Hartenstein V, et al. A systematic nomenclature for the insect brain. Neuron 2014, 81: 755–765.PubMedGoogle Scholar
  142. 142.
    Stern DL, Crocker J, Ding Y, Frankel N, Kappes G, Kim E, et al. Genetic and transgenic reagents for Drosophila simulans, D. mauritiana, D. yakuba, D. santomea, and D. virilis. G3 (Bethesda) 2017, 7: 1339–1347.Google Scholar
  143. 143.
    Prieto-Godino LL, Rytz R, Cruchet S, Bargeton B, Abuin L, Silbering AF, et al. Evolution of acid-sensing olfactory circuits in drosophilids. Neuron 2017, 93: 661–676.PubMedGoogle Scholar
  144. 144.
    Seeholzer LF, Seppo M, Stern DL, Ruta V. Evolution of a central neural circuit underlies Drosophila mate preferences. Nature 2018, 559: 564–569.PubMedPubMedCentralGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS 2019

Authors and Affiliations

  1. 1.Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life SciencesSoutheast UniversityNanjingChina
  2. 2.Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of NeurobiologyZhejiang University School of MedicineHangzhouChina

Personalised recommendations