MicroRNA-365 Knockdown Prevents Ischemic Neuronal Injury by Activating Oxidation Resistance 1-Mediated Antioxidant Signals

  • Jia-Lin Mo
  • Zhi-Guang Pan
  • Xiao Chen
  • Yu Lei
  • Ling-Ling Lv
  • Cheng Qian
  • Feng-Yan SunEmail author
Original Article


MicroRNA-365 (miR-365) is upregulated in the ischemic brain and is involved in oxidative damage in the diabetic rat. However, it is unclear whether miR-365 regulates oxidative stress (OS)-mediated neuronal damage after ischemia. Here, we used a transient middle cerebral artery occlusion model in rats and the hydrogen peroxide-induced OS model in primary cultured neurons to assess the roles of miR-365 in neuronal damage. We found that miR-365 exacerbated ischemic brain injury and OS-induced neuronal damage and was associated with a reduced expression of OXR1 (Oxidation Resistance 1). In contrast, miR-365 antagomir alleviated both the brain injury and OXR1 reduction. Luciferase assays indicated that miR-365 inhibited OXR1 expression by directly targeting the 3′-untranslated region of Oxr1. Furthermore, knockdown of OXR1 abolished the neuroprotective and antioxidant effects of the miR-365 antagomir. Our results suggest that miR-365 upregulation increases oxidative injury by inhibiting OXR1 expression, while its downregulation protects neurons from oxidative death by enhancing OXR1-mediated antioxidant signals.


MicroRNA Ischemic stroke Neuronal damage Oxidative stress Neuroprotection 



This work was supported by grants from the National Natural Science Foundation of China (81030020, 81571197, and 81771268) and the National Education Program of China (J0730860).

Conflict of interest

The authors claim that there are no conflicts of interest.

Supplementary material

12264_2019_371_MOESM1_ESM.pdf (44 kb)
Supplementary material 1 (PDF 43 kb)


  1. 1.
    Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999, 79: 1431–1568.CrossRefGoogle Scholar
  2. 2.
    Zhao H, Han Z, Ji X, Luo Y. Epigenetic regulation of oxidative stress in ischemic stroke. Aging Dis 2016, 7: 295–306.CrossRefGoogle Scholar
  3. 3.
    Li XJ, Zhang LM, Gu J, Zhang AZ, Sun FY. Melatonin decreases production of hydroxyl radical during cerebral ischemia-reperfusion. Acta Pharmacol Sin 1997, 18: 394–396.Google Scholar
  4. 4.
    Davis SM, Pennypacker KR. Targeting antioxidant enzyme expression as a therapeutic strategy for ischemic stroke. Neurochem Int 2017, 107: 23–32.CrossRefGoogle Scholar
  5. 5.
    Ramos E, Patino P, Reiter RJ, Gil-Martin E, Marco-Contelles J, Parada E, et al. Ischemic brain injury: new insights on the protective role of melatonin. Free Radic Biol Med 2017, 104: 32–53.CrossRefGoogle Scholar
  6. 6.
    Chamorro A, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 2016, 15: 869–881.CrossRefGoogle Scholar
  7. 7.
    Baker K, Marcus CB, Huffman K, Kruk H, Malfroy B, Doctrow SR. Synthetic combined superoxide dismutase catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury. J Pharmacol Exp Ther 1998, 284: 215–221.Google Scholar
  8. 8.
    Gu WP, Zhao H, Yenari MA, Sapolsky RM, Steinberg GK. Catalase over-expression protects striatal neurons from transient focal cerebral ischemia. Neuroreport 2004, 15: 413–416.CrossRefGoogle Scholar
  9. 9.
    Ishibashi N, Prokopenko O, Weisbrot-Lefkowitza M, Reuhl KR, Mirochnitchenko O. Glutathione peroxidase inhibits cell death and glial activation following experimental stroke. Brain Res Mol Brain Res 2002, 109: 34–44.CrossRefGoogle Scholar
  10. 10.
    Volkert MR, Elliott NA, Housman DE. Functional genomics reveals a family of eukaryotic oxidation protection genes. Proc Natl Acad Sci U S A 2000, 97: 14530–14535.CrossRefGoogle Scholar
  11. 11.
    Durand M, Kolpak A, Farrell T, Elliott NA, Shao W, Brown M, et al. The OXR domain defines a conserved family of eukaryotic oxidation resistance proteins. BMC Cell Biol 2007, 8: 13.CrossRefGoogle Scholar
  12. 12.
    Yang M, Luna L, Sorbo JG, Alseth I, Johansen RF, Backe PH, et al. Human OXR1 maintains mitochondrial DNA integrity and counteracts hydrogen peroxide-induced oxidative stress by regulating antioxidant pathways involving p21. Free Radic Biol Med 2014, 77: 41–48.CrossRefGoogle Scholar
  13. 13.
    Sanada Y, Asai S, Ikemoto A, Moriwaki T, Nakamura N, Miyaji M, et al. Oxidation resistance 1 is essential for protection against oxidative stress and participates in the regulation of aging in caenorhabditis elegans. Free Radic Res 2014, 48: 919–928.CrossRefGoogle Scholar
  14. 14.
    Kobayashi N, Takahashi M, Kihara S, Niimi T, Yamashita O, Yaginuma T. Cloning of cDNA encoding a bombyx mori homolog of human oxidation resistance 1 (OXR1) protein from diapause eggs, and analyses of its expression and function. J Insect Physiol 2014, 68: 58–68.CrossRefGoogle Scholar
  15. 15.
    Finelli MJ, Liu KX, Wu Y, Oliver PL, Davies KE. Oxr1 improves pathogenic cellular features of ALS-associated FUS and TDP-43 mutations. Hum Mol Genet 2015, 24: 3529–3544.CrossRefGoogle Scholar
  16. 16.
    Liu KX, Edwards B, Lee S, Finelli MJ, Davies B, Davies KE, et al. Neuron-specific antioxidant OXR1 extends survival of a mouse model of amyotrophic lateral sclerosis. Brain 2015, 138: 1167–1181.CrossRefGoogle Scholar
  17. 17.
    Oliver PL, Finelli MJ, Edwards B, Bitoun E, Butts DL, Becker EB, et al. Oxr1 is essential for protection against oxidative stress-induced neurodegeneration. PLoS Genet 2011, 7: e1002338.CrossRefGoogle Scholar
  18. 18.
    Jaramillo-Gutierrez G, Molina-Cruz A, Kumar S, Barillas-Mury C. The anopheles gambiae oxidation resistance 1 (OXR1) gene regulates expression of enzymes that detoxify reactive oxygen species. PLoS One 2010, 5: e11168.CrossRefGoogle Scholar
  19. 19.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116: 281–297.CrossRefGoogle Scholar
  20. 20.
    Zhou S, Ding F, Gu X. Non-coding RNAs as emerging regulators of neural injury responses and regeneration. Neurosci Bull 2016, 32: 253–264.CrossRefGoogle Scholar
  21. 21.
    Li WY, Zhang WT, Cheng YX, Liu YC, Zhai FG, Sun P, et al. Inhibition of KLF7-targeting microRNA 146b promotes sciatic nerve regeneration. Neurosci Bull 2018, 34: 419–437.CrossRefGoogle Scholar
  22. 22.
    Wang Y, Yang Z, Le W. Tiny but mighty: promising roles of microRNAs in the diagnosis and treatment of Parkinson’s disease. Neurosci Bull 2017, 33: 543–551.CrossRefGoogle Scholar
  23. 23.
    Li G, Morris-Blanco KC, Lopez MS, Yang T, Zhao H, Vemuganti R, et al. Impact of microRNAs on ischemic stroke: from pre- to post-disease. Prog Neurobiol 2018, 163–164: 59–78.CrossRefGoogle Scholar
  24. 24.
    Fang X, Sun D, Wang Z, Yu Z, Liu W, Pu Y, et al. MiR-30a positively regulates the inflammatory response of microglia in experimental autoimmune encephalomyelitis. Neurosci Bull 2017, 33: 603–615.CrossRefGoogle Scholar
  25. 25.
    Mo JL, Liu Q, Kou ZW, Wu KW, Yang P, Chen XH, et al. MicroRNA-365 modulates astrocyte conversion into neuron in adult rat brain after stroke by targeting Pax6. Glia 2018, 66:1263–1532.CrossRefGoogle Scholar
  26. 26.
    Zheng K, Wang N, Shen Y, Zhang Z, Gu Q, Xu X, et al. Pro-apoptotic effects of microRNA-365 on retinal neurons by targeting IGF-1 in diabetic rats: an in vivo and in vitro study. J Diabetes Investig 2018, 9:1041–1051.CrossRefGoogle Scholar
  27. 27.
    Wang J, Zhang J, Chen X, Yang Y, Wang F, Li W, et al. MiR-365 promotes diabetic retinopathy through inhibiting Timp3 and increasing oxidative stress. Exp Eye Res 2018, 168: 89–99.CrossRefGoogle Scholar
  28. 28.
    Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral-artery occlusion without craniectomy in rats. Stroke 1989, 20: 84–91.CrossRefGoogle Scholar
  29. 29.
    Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR. A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 1990, 10: 290–293.CrossRefGoogle Scholar
  30. 30.
    Wu KW, Kou ZW, Mo JL, Deng XX, Sun FY. Neurovascular coupling protects neurons against hypoxic injury via inhibition of potassium currents by generation of nitric oxide in direct neuron and endothelium cocultures. Neuroscience 2016, 334: 275–282.CrossRefGoogle Scholar
  31. 31.
    Ma Q, Zhao H, Tao Z, Wang R, Liu P, Han Z, et al. MicroRNA-181c exacerbates brain injury in acute ischemic stroke. Aging Dis 2016, 7: 705–714.CrossRefGoogle Scholar
  32. 32.
    Redon CE, Dickey JS, Bonner WM, Sedelnikova OA. Gamma-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Adv Space Res 2009, 43: 1171–1178.CrossRefGoogle Scholar
  33. 33.
    Downs JA, Lowndes NF, Jackson SP. A role for saccharomyces cerevisiae histone H2A in DNA repair. Nature 2000, 408: 1001–1004.CrossRefGoogle Scholar
  34. 34.
    Kuo LJ, Yang LX. Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo 2008, 22: 305–309.Google Scholar
  35. 35.
    He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 2017, 44: 532–553.CrossRefGoogle Scholar
  36. 36.
    Sun X, Zhang QW, Xu M, Guo JJ, Shen SW, Wang YQ, et al. New striatal neurons form projections to substantia nigra in adult rat brain after stroke. Neurobiol Dis 2012, 45: 601–609.CrossRefGoogle Scholar
  37. 37.
    Hou SW, Wang YQ, Xu M, Shen DH, Wang JJ, Huang F, et al. Functional integration of newly generated neurons into striatum after cerebral ischemia in the adult rat brain. Stroke 2008, 39: 2837–2844.CrossRefGoogle Scholar
  38. 38.
    Duan CL, Liu CW, Shen SW, Yu Z, Mo JL, Chen XH, et al. Striatal astrocytes transdifferentiate into functional mature neurons following ischemic brain injury. Glia 2015, 63: 1660–1670.CrossRefGoogle Scholar
  39. 39.
    Darsalia V, Heldmann U, Lindvall O, Kokaia Z. Stroke-induced neurogenesis in aged brain. Stroke 2005, 36: 1790–1795.CrossRefGoogle Scholar
  40. 40.
    Zhang QW, Deng XX, Sun X, Xu JX, Sun FY. Exercise promotes axon regeneration of newborn striatonigral and corticonigral projection neurons in rats after ischemic stroke. PLoS One 2013, 8: e80139.CrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS 2019

Authors and Affiliations

  • Jia-Lin Mo
    • 1
    • 3
  • Zhi-Guang Pan
    • 2
    • 3
  • Xiao Chen
    • 1
    • 3
  • Yu Lei
    • 1
    • 3
  • Ling-Ling Lv
    • 1
    • 3
  • Cheng Qian
    • 1
    • 3
  • Feng-Yan Sun
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Neurobiology and Institute for Basic Research on Aging and Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
  2. 2.Department of Neurosurgery, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
  3. 3.State Key Laboratory of Medical Neurobiology, School of Basic Medical SciencesFudan UniversityShanghaiChina
  4. 4.Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Shanghai Medical CollegeFudan UniversityShanghaiChina

Personalised recommendations