Advertisement

Human Brain Slice Culture: A Useful Tool to Study Brain Disorders and Potential Therapeutic Compounds

  • Xin-Rui QiEmail author
  • Ronald W. H. Verwer
  • Ai-Min Bao
  • Rawien A. Balesar
  • Sabina Luchetti
  • Jiang-Ning Zhou
  • Dick F. Swaab
Review
  • 100 Downloads

Abstract

Investigating the pathophysiological mechanisms underlying brain disorders is a priority if novel therapeutic strategies are to be developed. In vivo studies of animal models and in vitro studies of cell lines/primary cell cultures may provide useful tools to study certain aspects of brain disorders. However, discrepancies among these studies or unsuccessful translation from animal/cell studies to human/clinical studies often occur, because these models generally represent only some symptoms of a neuropsychiatric disorder rather than the complete disorder. Human brain slice cultures from postmortem tissue or resected tissue from operations have shown that, in vitro, neurons and glia can stay alive for long periods of time, while their morphological and physiological characteristics, and their ability to respond to experimental manipulations are maintained. Human brain slices can thus provide a close representation of neuronal networks in vivo, be a valuable tool for investigation of the basis of neuropsychiatric disorders, and provide a platform for the evaluation of novel pharmacological treatments of human brain diseases. A brain bank needs to provide the necessary infrastructure to bring together donors, hospitals, and researchers who want to investigate human brain slices in cultures of clinically and neuropathologically well-documented material.

Keywords

Alzheimer’s disease Brain bank Brain-derived neurotrophic factor Depression Electrical activity Human brain slice culture Neuropsychiatric disorders Organotypic culture Postmortem human brain tissue Resected human brain tissue 

Notes

Acknowledgements

We are grateful to the Netherlands Brain Bank (Director Dr. I. Huitinga) at the Netherlands Institute for Neuroscience for providing brain material and patient information, and to Wilma Verweij for secretarial assistance. This review was supported by the National Natural Science Foundation of China (81501172), the China Exchange Programme of the Royal Netherlands Academy of Arts and Sciences (10CDP0037 and 05CD9027), the Shanghai Municipal Commission of Health and Family Planning (20154Y0016), an Innovation Project of the Chinese Academy of Sciences (KSCX2-SW-217), a National Basic Research Development Program of China (2006CB500705), the Internationale Stichting Alzheimer Onderzoek (05501), the Jan Dekkerstichting and dr. Lutgardine Bouwmanstichting, and the Stichting Vrienden van het Herseninstituut.

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Drummond E, Wisniewski T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol 2017, 133: 155–175.CrossRefGoogle Scholar
  2. 2.
    Nader MA. Animal models for addiction medicine: From vulnerable phenotypes to addicted individuals. Prog Brain Res 2016, 224: 3–24.CrossRefGoogle Scholar
  3. 3.
    Czeh B, Fuchs E, Wiborg O, Simon M. Animal models of major depression and their clinical implications. Prog Neuropsychopharmacol Biol Psychiatry 2016, 64: 293–310.CrossRefGoogle Scholar
  4. 4.
    Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 1997, 134: 319–329.CrossRefGoogle Scholar
  5. 5.
    Sasaguri H, Nilsson P, Hashimoto S, Nagata K, Saito T, De Strooper B, et al. APP mouse models for Alzheimer’s disease preclinical studies. EMBO J 2017, 36: 2473–2487.CrossRefGoogle Scholar
  6. 6.
    Testa-Silva G, Verhoog MB, Linaro D, de Kock CP, Baayen JC, Meredith RM, et al. High bandwidth synaptic communication and frequency tracking in human neocortex. PLoS Biol 2014, 12: e1002007.CrossRefGoogle Scholar
  7. 7.
    Verhoog MB, Goriounova NA, Obermayer J, Stroeder J, Hjorth JJ, Testa-Silva G, et al. Mechanisms underlying the rules for associative plasticity at adult human neocortical synapses. J Neurosci 2013, 33: 17197–17208.CrossRefGoogle Scholar
  8. 8.
    Oberheim NA, Wang XH, Goldman S, Nedergaard M. Astrocytic complexity distinguishes the human brain. Trends Neurosci 2006, 29: 547–553.CrossRefGoogle Scholar
  9. 9.
    Oberheim NA, Takano T, Han X, He W, Lin JHC, Wang F, et al. Uniquely hominid features of adult human astrocytes. J Neurosci 2009, 29: 3276–3287.CrossRefGoogle Scholar
  10. 10.
    Van Dam D, De Deyn PP. Non human primate models for Alzheimer’s disease-related research and drug discovery. Expert Opin Drug Discov 2017, 12: 187–200.Google Scholar
  11. 11.
    Bauman MD, Schumann CM. Advances in nonhuman primate models of autism: Integrating neuroscience and behavior. Exp Neurol 2018, 299: 252–265.CrossRefGoogle Scholar
  12. 12.
    Willner P. The validity of animal models of depression. Psychopharmacology (Berl) 1984, 83: 1–16.CrossRefGoogle Scholar
  13. 13.
    Valster A, Tran NL, Nakada M, Berens ME, Chan AY, Symons M. Cell migration and invasion assays. Methods 2005, 37: 208–215.CrossRefGoogle Scholar
  14. 14.
    Buendia I, Parada E, Navarro E, Leon R, Negredo P, Egea J, et al. Subthreshold concentrations of melatonin and galantamine improves pathological AD-hallmarks in hippocampal organotypic cultures. Mol Neurobiol 2016, 53: 3338–3348.CrossRefGoogle Scholar
  15. 15.
    Shahani N, Subramaniam S, Wolf T, Tackenberg C, Brandt R. Tau aggregation and progressive neuronal degeneration in the absence of changes in spine density and morphology after targeted expression of Alzheimer’s disease-relevant tau constructs in organotypic hippocampal slices. J Neurosci 2006, 26: 6103–6114.CrossRefGoogle Scholar
  16. 16.
    Cartier J, Piyasena C, Sparrow SA, Boardman JP, Drake AJ. Alterations in glucose concentrations affect DNA methylation at Lrg1 in an ex vivo rat cortical slice model of preterm brain injury. Eur J Neurosci 2018, 47: 380–387.CrossRefGoogle Scholar
  17. 17.
    Molnar G, Rozsa M, Baka J, Holderith N, Barzo P, Nusser Z, et al. Human pyramidal to interneuron synapses are mediated by multi-vesicular release and multiple docked vesicles. Elife 2016, 5.Google Scholar
  18. 18.
    Konishi Y, Lindholm K, Yang LB, Li R, Shen Y. Isolation of living neurons from human elderly brains using the immunomagnetic sorting DNA-linker system. Am J Pathol 2002, 161: 1567–1576.CrossRefGoogle Scholar
  19. 19.
    Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 2011, 480: 547–551.CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 2013, 78: 785–798.CrossRefGoogle Scholar
  21. 21.
    Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature 2013, 501: 373–379.CrossRefGoogle Scholar
  22. 22.
    Qi XR, Luchetti S, Verwer RWH, Sluiter AA, Mason MRJ, Zhou JN, et al. Alterations in the steroid biosynthetic pathways in the human prefrontal cortex in mood disorders: A post-mortem study. Brain Pathol 2018, 28: 536–547.CrossRefGoogle Scholar
  23. 23.
    Verwer RW, Baker RE, Boiten EF, Dubelaar EJ, van Ginkel CJ, Sluiter AA, et al. Post-mortem brain tissue cultures from elderly control subjects and patients with a neurodegenerative disease. Exp Gerontol 2003, 38: 167–172.CrossRefGoogle Scholar
  24. 24.
    Verwer RW, Hermens WT, Dijkhuizen P, ter Brake O, Baker RE, Salehi A, et al. Cells in human postmortem brain tissue slices remain alive for several weeks in culture. FASEB J 2002, 16: 54–60.CrossRefGoogle Scholar
  25. 25.
    Verwer RW, Sluiter AA, Balesar RA, Baaijen JC, de Witt Hamer PC, Speijer D, et al. Injury response of resected human brain tissue in vitro. Brain Pathol 2015, 25: 454–468.CrossRefGoogle Scholar
  26. 26.
    Verwer RW, Sluiter AA, Balesar RA, Baayen JC, Noske DP, Dirven CM, et al. Mature astrocytes in the adult human neocortex express the early neuronal marker doublecortin. Brain 2007, 130: 3321–3335.CrossRefGoogle Scholar
  27. 27.
    Verwer RW, Sluiter AA, Balesar RA, Baayen JC, Speijer D, Idema S, et al. Altered loyalties of neuronal markers in cultured slices of resected human brain tissue. Brain Pathol 2016, 26: 523–532.CrossRefGoogle Scholar
  28. 28.
    Wu L, Sluiter AA, Guo HF, Balesar RA, Swaab DF, Zhou JN, et al. Neural stem cells improve neuronal survival in cultured postmortem brain tissue from aged and Alzheimer patients. J Cell Mol Med 2008, 12: 1611–1621.CrossRefGoogle Scholar
  29. 29.
    Castren E, Rantamaki T. The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Dev Neurobiol 2010, 70: 289–297.CrossRefGoogle Scholar
  30. 30.
    Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci 2007, 10: 1089–1093.CrossRefGoogle Scholar
  31. 31.
    Wolkowitz OM, Reus VI, Keebler A, Nelson N, Friedland M, Brizendine L, et al. Double-blind treatment of major depression with dehydroepiandrosterone. Am J Psychiatry 1999, 156: 646–649.PubMedGoogle Scholar
  32. 32.
    Rabkin JG, McElhiney MC, Rabkin R, McGrath PJ, Ferrando SJ. Placebo-controlled trial of dehydroepiandrosterone (DHEA) for treatment of nonmajor depression in patients with HIV/AIDS. Am J Psychiatry 2006, 163: 59–66.CrossRefGoogle Scholar
  33. 33.
    Bsibsi M, Persoon-Deen C, Verwer RW, Meeuwsen S, Ravid R, Van Noort JM. Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia 2006, 53: 688–695.CrossRefGoogle Scholar
  34. 34.
    Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 2012, 122: 1316–1338.CrossRefGoogle Scholar
  35. 35.
    Dai JP, Swaab DF, Buijs RM. Recovery of axonal transport in “dead neurons”. Lancet 1998, 351: 499–500.CrossRefGoogle Scholar
  36. 36.
    Dai JP, Van der Vliet J, Swaab DF, Buijs RM. Human retinohypothalamic tract as revealed by in vitro postmortem tracing. J Comp Neurol 1998, 397: 357–370.CrossRefGoogle Scholar
  37. 37.
    Dai JP, Swaab DF, Van der Vliet J, Buijs RM. Postmortem tracing reveals the organization of hypothalamic projections of the suprachiasmatic nucleus in the human brain. J Comp Neurol 1998, 400: 87–102.CrossRefGoogle Scholar
  38. 38.
    Dai JP, Van der Vliet J, Swaab DF, Buijs RM. Postmortem anterograde tracing of intrahypothalamic projections of the human dorsomedial nucleus of the hypothalamus. J Comp Neurol 1998, 401: 16–33.CrossRefGoogle Scholar
  39. 39.
    Dai JP, Buijs RM, Kamphorst W, Swaab DF. Impaired axonal transport of cortical neurons in Alzheimer’s disease is associated with neuropathological changes. Brain Res 2002, 948: 138–144.CrossRefGoogle Scholar
  40. 40.
    Dai JP, Buijs R, Swaab D. Glucocorticoid hormone (cortisol) affects axonal transport in human cortex neurons but shows resistance in Alzheimer’s disease. Br J Pharmacol 2004, 143: 606–610.CrossRefGoogle Scholar
  41. 41.
    Schwarz N, Hedrich UBS, Schwarz H, P AH, Dammeier N, Auffenberg E, et al. Human cerebrospinal fluid promotes long-term neuronal viability and network function in human neocortical organotypic brain slice cultures. Sci Rep 2017, 7: 12249.Google Scholar
  42. 42.
    Wickham J, Brodjegard NG, Vighagen R, Pinborg LH, Bengzon J, Woldbye DPD, et al. Prolonged life of human acute hippocampal slices from temporal lobe epilepsy surgery. Sci Rep 2018, 8: 4158.CrossRefGoogle Scholar
  43. 43.
    Le Duigou C, Savary E, Morin-Brureau M, Gomez-Dominguez D, Sobczyk A, Chali F, et al. Imaging pathological activities of human brain tissue in organotypic culture. J Neurosci Methods 2018, 298: 33–44.CrossRefGoogle Scholar
  44. 44.
    Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 2002, 298: 1418–1421.CrossRefGoogle Scholar
  45. 45.
    Mendes ND, Fernandes A, Almeida GM, Santos LE, Selles MC, Lyra ESNM, et al. Free-floating adult human brain-derived slice cultures as a model to study the neuronal impact of Alzheimer’s disease-associated Abeta oligomers. J Neurosci Methods 2018, 307: 203–209.CrossRefGoogle Scholar
  46. 46.
    Sebollela A, Freitas-Correa L, Oliveira FF, Paula-Lima AC, Saraiva LM, Martins SM, et al. Amyloid-beta oligomers induce differential gene expression in adult human brain slices. J Biol Chem 2012, 287: 7436–7445.CrossRefGoogle Scholar
  47. 47.
    Chaichana KL, Capilla-Gonzalez V, Gonzalez-Perez O, Pradilla G, Han J, Olivi A, et al. Preservation of glial cytoarchitecture from ex vivo human tumor and non-tumor cerebral cortical explants: A human model to study neurological diseases. J Neurosci Methods 2007, 164: 261–270.CrossRefGoogle Scholar
  48. 48.
    Ting JT, Kalmbach B, Chong P, de Frates R, Keene CD, Gwinn RP, et al. A robust ex vivo experimental platform for molecular-genetic dissection of adult human neocortical cell types and circuits. Sci Rep 2018, 8: 8407.CrossRefGoogle Scholar
  49. 49.
    Andersson M, Avaliani N, Svensson A, Wickham J, Pinborg LH, Jespersen B, et al. Optogenetic control of human neurons in organotypic brain cultures. Sci Rep 2016, 6.Google Scholar
  50. 50.
    Lavenex P, Lavenex PB, Bennett JL, Amaral DG. Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation. J Comp Neurol 2009, 512: 27–51.CrossRefGoogle Scholar
  51. 51.
    Fountoulakis M, Hardmeier R, Hoger H, Lubec G. Postmortem changes in the level of brain proteins. Exp Neurol 2001, 167: 86–94.CrossRefGoogle Scholar
  52. 52.
    Bao AM, Swaab DF. The art of matching brain tissue from patients and controls for postmortem research. Handb Clin Neurol 2018, 150: 197–217.CrossRefGoogle Scholar
  53. 53.
    Samarasekera N, Salman RA, Huitinga I, Klioueva N, McLean CA, Kretzschmar H, et al. Brain banking for neurological disorders. Lancet Neurol 2013, 12: 1096–1105.CrossRefGoogle Scholar
  54. 54.
    Yan XX, Ma C, Bao AM, Wang XM, Gai WP. Brain banking as a cornerstone of neuroscience in China. Lancet Neurol 2015, 14: 136.CrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS 2019

Authors and Affiliations

  • Xin-Rui Qi
    • 1
    • 2
    Email author
  • Ronald W. H. Verwer
    • 2
  • Ai-Min Bao
    • 3
  • Rawien A. Balesar
    • 2
  • Sabina Luchetti
    • 2
  • Jiang-Ning Zhou
    • 4
  • Dick F. Swaab
    • 2
  1. 1.Center for Translational Neurodegeneration and Regenerative TherapyShanghai Tenth People’s Hospital Affiliated to Tongji University School of MedicineShanghaiChina
  2. 2.Department of Neuropsychiatric DisordersNetherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
  3. 3.Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical NeurobiologyZhejiang University School of MedicineHangzhouChina
  4. 4.Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of ChinaChinese Academy of SciencesHefeiChina

Personalised recommendations