Neuroscience Bulletin

, Volume 34, Issue 6, pp 1131–1136 | Cite as

The Possibility and Molecular Mechanisms of Cell Pyroptosis After Cerebral Ischemia

  • Zhaofei Dong
  • Kuang Pan
  • Jingrui Pan
  • Qingxia Peng
  • Yidong WangEmail author


Stroke is an important disease that is prevalent worldwide [1, 2, 3]. Ischemic stroke accounts for 80% of stroke cases. Currently, evidence-based effective treatments for ischemic stroke are limited, and only intravenous thrombolysis with Alteplase (a commercially available thrombolytic agent) within 4.5 h of stroke onset and thrombectomy and arterial thrombolysis within 6–24 h of onset are effective [4, 5]. However, because these two treatments have strict indications and certain risks (reperfusion injury and bleeding) [5, 6, 7, 8], there is an urgent need to develop new treatment methods. Thus, comprehensive elucidation of the molecular mechanisms underlying ischemic brain damage and the search for key signaling pathways and protein molecules are important for guiding the clinical treatment of ischemic stroke.

The inflammatory reaction is an important pathophysiological mechanism underlying cerebral ischemic injury. The inflammatory reaction after cerebral ischemia...



This perspective was supported by the Natural Science Foundation of Guangdong Province, China (2017A030313869) and the Science and Technology Project of Guangzhou City, China (201607010325).

Compliance with Ethical Standards

Conflict of interest

The authors claim no conflicts of interest.


  1. 1.
    Wang W, Jiang B, Sun H, Ru X, Sun D, Wang L, et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults. Circulation 2017, 135: 759–771.CrossRefGoogle Scholar
  2. 2.
    Koton S, Schneider AL, Rosamond WD, Shahar E, Sang Y, Gottesman RF, et al. Stroke incidence and mortality trends in US communities, 1987 to 2011. JAMA 2014, 312: 259–268.CrossRefGoogle Scholar
  3. 3.
    Norrving B, Kissela B. The global burden of stroke and need for a continuum of care. Neurology 2013, 80: S5–12.CrossRefGoogle Scholar
  4. 4.
    Demaerschalk BM, Kleindorfer DO, Adeoye OM, Demchuk AM, Fugate JE, Grotta JC, et al. Scientific rationale for the inclusion and exclusion criteria for intravenous alteplase in acute ischemic stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2016, 47: 581–641.CrossRefGoogle Scholar
  5. 5.
    Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. 2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2018, 49: e46–e110.CrossRefGoogle Scholar
  6. 6.
    Alberts MJ. Stroke treatment with intravenous tissue-type plasminogen activator: more proof that time is brain. Circulation 2017, 135: 140–142.CrossRefGoogle Scholar
  7. 7.
    Yang J, Liang H, Song Y, Shen L, Wang S. Analysis of the efficacy and safety of recombinant tissue plasminogen activator for chinese patients over 80 years of age with acute ischemic stroke: a pilot study. Neurosci Bull 2016, 32: 202–203.CrossRefGoogle Scholar
  8. 8.
    Zhao Q, Li X, Dong W, Ye M, Cao Y, Zhang M, et al. Factors associated with thrombolysis outcome in ischemic stroke patients with atrial fibrillation. Neurosci Bull 2016, 32: 145–152.CrossRefGoogle Scholar
  9. 9.
    Kawabori M, Yenari MA. Inflammatory responses in brain ischemia. Curr Med Chem 2015, 22: 1258–1277.CrossRefGoogle Scholar
  10. 10.
    Hossmann KA. The two pathophysiologies of focal brain ischemia: implications for translational stroke research. J Cereb Blood Flow Metab 2012, 32: 1310–1316.CrossRefGoogle Scholar
  11. 11.
    Vidale S, Consoli A, Arnaboldi M, Consoli D. Postischemic Inflammation in acute stroke. J Clin Neurol 2017, 13: 1–9.CrossRefGoogle Scholar
  12. 12.
    Manning NW, Campbell BC, Oxley TJ, Chapot R. Acute ischemic stroke: time, penumbra, and reperfusion. Stroke 2014, 45: 640–644.CrossRefGoogle Scholar
  13. 13.
    Gelderblom M, Sobey CG, Kleinschnitz C, Magnus T. Danger signals in stroke. Ageing Res Rev 2015, 24: 77–82.CrossRefGoogle Scholar
  14. 14.
    Xu X, Jiang Y. The Yin and Yang of innate immunity in stroke. Biomed Res Int 2014, 2014: 807978.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Zille M, Farr TD, Przesdzing I, Muller J, Sommer C, Dirnagl U, et al. Visualizing cell death in experimental focal cerebral ischemia: promises, problems, and perspectives. J Cereb Blood Flow Metab 2012, 32: 213–231.CrossRefGoogle Scholar
  16. 16.
    Aachoui Y, Sagulenko V, Miao EA, Stacey KJ. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Curr Opin Microbiol 2013, 16: 319–326.CrossRefGoogle Scholar
  17. 17.
    Wallach D, Kang TB, Dillon CP, Green DR. Programmed necrosis in inflammation: Toward identification of the effector molecules. Science 2016, 352: aaf2154.CrossRefGoogle Scholar
  18. 18.
    Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages. Nature 1992, 358: 167–169.CrossRefGoogle Scholar
  19. 19.
    Chen LM, Kaniga K, Galan JE. Salmonella spp. are cytotoxic for cultured macrophages. Mol Microbiol 1996, 21: 1101–1115.CrossRefGoogle Scholar
  20. 20.
    Monack DM, Raupach B, Hromockyj AE, Falkow S. Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc Natl Acad Sci U S A 1996, 93: 9833–9838.CrossRefGoogle Scholar
  21. 21.
    Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ 1999, 6: 99–104.CrossRefGoogle Scholar
  22. 22.
    Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol 2001, 9: 113–114.CrossRefGoogle Scholar
  23. 23.
    Han Y, Qiu H, Pei X, Fan Y, Tian H, Geng J. Low-dose sinapic acid abates the pyroptosis of macrophages via downregulation of lncRNA-MALAT1 in rats with diabetic atherosclerosis. J Cardiovasc Pharmacol 2017, 71: 104–112.Google Scholar
  24. 24.
    Chen YL, Xu G, Liang X, Wei J, Luo J, Chen GN, et al. Inhibition of hepatic cells pyroptosis attenuates CLP-induced acute liver injury. Am J Transl Res 2016, 8: 5685–5695.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Khanova E, Wu R, Wang W, Yan R, Chen Y, French SW, et al. Pyroptosis by caspase11/4-gasdermin-D pathway in alcoholic hepatitis. Hepatology 2017, 67: 1737–1753.CrossRefGoogle Scholar
  26. 26.
    Li X, Du N, Zhang Q, Li J, Chen X, Liu X, et al. MicroRNA-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy. Cell Death Dis 2014, 5: e1479.CrossRefGoogle Scholar
  27. 27.
    Li X, Zeng L, Cao C, Lu C, Lian W, Han J, et al. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR–23c targeting of ELAVL1 in diabetic nephropathy. Exp Cell Res 2017, 350: 327–335.CrossRefGoogle Scholar
  28. 28.
    Jiang MY, Han ZD, Li W, Yue F, Ye J, Li B, et al. Mitochondrion-associated protein peroxiredoxin 3 promotes benign prostatic hyperplasia through autophagy suppression and pyroptosis activation. Oncotarget 2017, 8: 80295–80302.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Tan MS, Tan L, Jiang T, Zhu XC, Wang HF, Jia CD, et al. Amyloid-beta induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis 2014, 5: e1382.CrossRefGoogle Scholar
  30. 30.
    Tan CC, Zhang JG, Tan MS, Chen H, Meng DW, Jiang T, et al. NLRP1 inflammasome is activated in patients with medial temporal lobe epilepsy and contributes to neuronal pyroptosis in amygdala kindling-induced rat model. J Neuroinflammation 2015, 12: 18.CrossRefGoogle Scholar
  31. 31.
    Yang JR, Yao FH, Zhang JG, Ji ZY, Li KL, Zhan J, et al. Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway. Am J Physiol Renal Physiol 2014, 306: F75–84.CrossRefGoogle Scholar
  32. 32.
    Adamczak SE, de Rivero Vaccari JP, Dale G, Brand FJ, Nonner D, Bullock M, et al. Pyroptotic neuronal cell death mediated by the AIM2 inflammasome. J Cereb Blood Flow Metab 2014, 34: 621–629.CrossRefGoogle Scholar
  33. 33.
    Alfonso-Loeches S, Urena-Peralta JR, Morillo-Bargues MJ, Oliver-De La Cruz J, Guerri C. Role of mitochondria ROS generation in ethanol-induced NLRP3 inflammasome activation and cell death in astroglial cells. Front Cell Neurosci 2014, 8: 216.CrossRefGoogle Scholar
  34. 34.
    Qiu Z, Lei S, Zhao B, Wu Y, Su W, Liu M, et al. NLRP3 Inflammasome activation-mediated pyroptosis aggravates myocardial ischemia/reperfusion injury in diabetic rats. Oxid Med Cell Longev 2017, 2017: 9743280.CrossRefGoogle Scholar
  35. 35.
    Sborgi L, Ruhl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 2016, 35: 1766–1778.CrossRefGoogle Scholar
  36. 36.
    Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 2016, 535: 111–116.CrossRefGoogle Scholar
  37. 37.
    Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 2016, 535: 153–158.CrossRefGoogle Scholar
  38. 38.
    Chen X, He WT, Hu L, Li J, Fang Y, Wang X, et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res 2016, 26: 1007–1020.CrossRefGoogle Scholar
  39. 39.
    Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS, Kayagaki N, et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci U S A 2016, 113: 7858–7863.CrossRefGoogle Scholar
  40. 40.
    Mulvihill E, Sborgi L, Mari SA, Pfreundschuh M, Hiller S, Muller DJ. Mechanism of membrane pore formation by human gasdermin-D. EMBO J 2018, 37(14). pii: e98321..Google Scholar
  41. 41.
    Sanz AB, Sanchez-Nino MD, Izquierdo MC, Gonzalez-Espinoza L, Ucero AC, Poveda J, et al. Macrophages and recently identified forms of cell death. Int Rev Immunol 2014, 33: 9–22.CrossRefGoogle Scholar
  42. 42.
    Kepp O, Galluzzi L, Zitvogel L, Kroemer G. Pyroptosis - a cell death modality of its kind? Eur J Immunol 2010, 40: 627–630.CrossRefGoogle Scholar
  43. 43.
    Miao EA, Rajan JV, Aderem A. Caspase-1-induced pyroptotic cell death. Immunol Rev 2011, 243: 206–214.CrossRefGoogle Scholar
  44. 44.
    Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012, 19: 107–120.CrossRefGoogle Scholar
  45. 45.
    Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014, 514: 187–192.CrossRefGoogle Scholar
  46. 46.
    Fayaz SM, Suvanish Kumar VS, Rajanikant GK. Necroptosis: who knew there were so many interesting ways to die? CNS Neurol Disord Drug Targets 2014, 13: 42–51.CrossRefGoogle Scholar
  47. 47.
    Kono H, Kimura Y, Latz E. Inflammasome activation in response to dead cells and their metabolites. Curr Opin Immunol 2014, 30: 91–98.CrossRefGoogle Scholar
  48. 48.
    Franklin BS, Bossaller L, De Nardo D, Ratter JM, Stutz A, Engels G, et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol 2014, 15: 727–737.CrossRefGoogle Scholar
  49. 49.
    Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015, 526: 660–665.CrossRefGoogle Scholar
  50. 50.
    Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015, 526: 666–671.CrossRefGoogle Scholar
  51. 51.
    He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res 2015, 25: 1285–1298.CrossRefGoogle Scholar
  52. 52.
    Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun 2017, 8: 14128.CrossRefGoogle Scholar
  53. 53.
    Wang Y, Gao W, Shi X, Ding J, Liu W, He H, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 2017, 547: 99–103.CrossRefGoogle Scholar
  54. 54.
    Wang Y, Yin B, Li D, Wang G, Han X, Sun X. GSDME mediates caspase-3-dependent pyroptosis in gastric cancer. Biochem Biophys Res Commun 2018, 495: 1418–1425.CrossRefGoogle Scholar
  55. 55.
    Barrington J, Lemarchand E, Allan SM. A brain in flame; do inflammasomes and pyroptosis influence stroke pathology? Brain Pathol 2017, 27: 205–212.CrossRefGoogle Scholar
  56. 56.
    Fann DY, Lee SY, Manzanero S, Tang SC, Gelderblom M, Chunduri P, et al. Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke. Cell Death Dis 2013, 4: e790.CrossRefGoogle Scholar
  57. 57.
    Jamilloux Y, Pierini R, Querenet M, Juruj C, Fauchais AL, Jauberteau MO, et al. Inflammasome activation restricts Legionella pneumophila replication in primary microglial cells through flagellin detection. Glia 2013, 61: 539–549.CrossRefGoogle Scholar
  58. 58.
    Love S. Apoptosis and brain ischaemia. Prog Neuropsychopharmacol Biol Psychiatry 2003, 27: 267–282.CrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Neurology, Sun Yat-sen Memorial HospitalSun Yat-sen UniversityGuangzhouChina
  2. 2.Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of MedicineSun Yat-sen UniversityGuangzhouChina
  3. 3.Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial HospitalSun Yat-sen UniversityGuangzhouChina

Personalised recommendations