Advertisement

Neuroscience Bulletin

, Volume 31, Issue 3, pp 371–378 | Cite as

Tunneling nanotubes between rat primary astrocytes and C6 glioma cells alter proliferation potential of glioma cells

  • Lei Zhang
  • Yan ZhangEmail author
Report

Abstract

The tunneling nanotube (TNT) is a newly discovered, long and thin tubular structure between cells. In this study, we established a co-culture system for rat primary astrocytes and C6 glioma cells and found that TNTs formed between them. Most of the TNTs initiated from astrocytes towards C6 glioma cells. The formation of TNTs depended on p53. In addition, hydrogen peroxide increased the number of TNTs in the co-culture system. Established TNTs reduced the proliferation of C6 glioma cells. Our data suggest that TNTs between astrocytes and glioma cells facilitate substance transfer and therefore alter the properties, including the proliferation potential, of glioma cells.

Keywords

tunneling nanotube astrocyte glioma proliferation p53 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12264_2014_1522_MOESM1_ESM.pdf (18 kb)
Supplementary material, approximately 20 KB.

Supplementary material, approximately 1.86 MB.

References

  1. [1]
    Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH. Nanotubular highways for intercellular organelle transport. Science 2004, 303: 1007–1010.CrossRefPubMedGoogle Scholar
  2. [2]
    Ramirez-Weber FA, Kornberg TB. Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 1999, 97: 599–607.CrossRefPubMedGoogle Scholar
  3. [3]
    Watkins SC, Salter RD. Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 2005, 23: 309–318.CrossRefPubMedGoogle Scholar
  4. [4]
    Sun X, Wang Y, Zhang J, Tu J, Wang XJ, Su XD, et al. Tunneling-nanotube direction determination in neurons and astrocytes. Cell Death Dis 2012, 3: e438.CrossRefPubMedCentralPubMedGoogle Scholar
  5. [5]
    Bukoreshtliev NV, Wang X, Hodneland E, Gurke S, Barroso JF, Gerdes HH. Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. FEBS Lett 2009, 583: 1481–1488.CrossRefPubMedGoogle Scholar
  6. [6]
    Vidulescu C, Clejan S, O’Connor K C. Vesicle traffic through intercellular bridges in DU 145 human prostate cancer cells. J Cell Mol Med 2004, 8: 388–396.CrossRefPubMedGoogle Scholar
  7. [7]
    Onfelt B, Davis DM. Can membrane nanotubes facilitate communication between immune cells? Biochem Soc Trans 2004, 32: 676–678.CrossRefPubMedGoogle Scholar
  8. [8]
    Freund D, Bauer N, Boxberger S, Feldmann S, Streller U, Ehninger G, et al. Polarization of human hematopoietic progenitors during contact with multipotent mesenchymal stromal cells: effects on proliferation and clonogenicity. Stem Cells Dev 2006, 15: 815–829.CrossRefPubMedGoogle Scholar
  9. [9]
    Onfelt B, Nedvetzki S, Yanagi K, Davis DM. Cutting edge: Membrane nanotubes connect immune cells. J Immunol 2004, 173: 1511–1513.CrossRefPubMedGoogle Scholar
  10. [10]
    Wustner D. Plasma membrane sterol distribution resembles the surface topography of living cells. Mol Biol Cell 2007, 18: 211–228.CrossRefPubMedCentralPubMedGoogle Scholar
  11. [11]
    Koyanagi M, Brandes RP, Haendeler J, Zeiher AM, Dimmeler S. Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circ Res 2005, 96: 1039–1041.CrossRefPubMedGoogle Scholar
  12. [12]
    Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Kohler K, et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 2008, 10: 211–219.CrossRefPubMedGoogle Scholar
  13. [13]
    Chauveau A, Aucher A, Eissmann P, Vivier E, Davis DM. Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells. Proc Natl Acad Sci U S A 2010, 107: 5545–5550.CrossRefPubMedCentralPubMedGoogle Scholar
  14. [14]
    Onfelt B, Nedvetzki S, Benninger RK, Purbhoo MA, Sowinski S, Hume AN, et al. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol 2006, 177: 8476–8483.CrossRefPubMedGoogle Scholar
  15. [15]
    Thayanithy V, Babatunde V, Dickson EL, Wong P, Oh S, Ke X, et al. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells. Exp Cell Res 2014, 323: 178–188.CrossRefPubMedCentralPubMedGoogle Scholar
  16. [16]
    Lou E, Fujisawa S, Barlas A, Romin Y, Manova-Todorova K, Moore MA, et al. Tunneling Nanotubes: A new paradigm for studying intercellular communication and therapeutics in cancer. Commun Integr Biol 2012, 5: 399–403.CrossRefPubMedCentralPubMedGoogle Scholar
  17. [17]
    Gerdes HH, Bukoreshtliev NV, Barroso JF. Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett 2007, 581: 2194–2201.CrossRefPubMedGoogle Scholar
  18. [18]
    Wang Y, Cui J, Sun X, Zhang Y. Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ 2011, 18: 732–742.CrossRefPubMedCentralPubMedGoogle Scholar
  19. [19]
    Liu K, Ji K, Guo L, Wu W, Lu H, Shan P, et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc Res 2014, 92: 10–18.CrossRefPubMedGoogle Scholar
  20. [20]
    Costanzo M, Abounit S, Marzo L, Danckaert A, Chamoun Z, Roux P, et al. Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J Cell Sci 2013, 126: 3678–3685.CrossRefPubMedGoogle Scholar
  21. [21]
    Rainy N, Chetrit D, Rouger V, Vernitsky H, Rechavi O, Marguet D, et al. H-Ras transfers from B to T cells via tunneling nanotubes. Cell Death Dis 2013, 4: e726.CrossRefPubMedCentralPubMedGoogle Scholar
  22. [22]
    Schiller C, Huber JE, Diakopoulos KN, Weiss EH. Tunneling nanotubes enable intercellular transfer of MHC class I molecules. Hum Immunol 2013, 74: 412–416.CrossRefPubMedGoogle Scholar
  23. [23]
    Hase K, Kimura S, Takatsu H, Ohmae M, Kawano S, Kitamura H, et al. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat Cell Biol 2009, 11: 1427–1432.CrossRefPubMedGoogle Scholar
  24. [24]
    Smith IF, Shuai J, Parker I. Active generation and propagation of Ca2+ signals within tunneling membrane nanotubes. Biophys J 2011, 100: L37–39.CrossRefPubMedCentralPubMedGoogle Scholar
  25. [25]
    Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, et al. Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 2009, 11: 328–336.CrossRefPubMedGoogle Scholar
  26. [26]
    Gousset K, Zurzolo C. Tunnelling nanotubes: a highway for prion spreading? Prion 2009, 3: 94–98.CrossRefPubMedCentralPubMedGoogle Scholar
  27. [27]
    Davis DM, Sowinski S. Membrane nanotubes: dynamic longdistance connections between animal cells. Nat Rev Mol Cell Biol 2008, 9: 431–436.CrossRefPubMedGoogle Scholar
  28. [28]
    Arkwright PD, Luchetti F, Tour J, Roberts C, Ayub R, Morales AP, et al. Fas stimulation of T lymphocytes promotes rapid intercellular exchange of death signals via membrane nanotubes. Cell Res 2010, 20: 72–88.CrossRefPubMedCentralPubMedGoogle Scholar
  29. [29]
    Chinnery HR, Ruitenberg MJ, Plant GW, Pearlman E, Jung S, McMenamin PG. The chemokine receptor CX3CR1 mediates homing of MHC class II-positive cells to the normal mouse corneal epithelium. Invest Ophthalmol Vis Sci 2007, 48: 1568–1574.CrossRefPubMedCentralPubMedGoogle Scholar
  30. [30]
    Lou E, Fujisawa S, Morozov A, Barlas A, Romin Y, Dogan Y, et al. Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS One 2012, 7: e33093.CrossRefPubMedCentralPubMedGoogle Scholar
  31. [31]
    Austefjord MW, Gerdes H H, Wang X. Tunneling nanotubes: Diversity in morphology and structure. Commun Integr Biol 2014, 7: e27934.CrossRefPubMedCentralPubMedGoogle Scholar
  32. [32]
    Chen J, McKay RM, Parada LF. Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 2012, 149: 36–47.CrossRefPubMedCentralPubMedGoogle Scholar
  33. [33]
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007, 114: 97–109.CrossRefPubMedCentralPubMedGoogle Scholar
  34. [34]
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005, 352: 987–996.CrossRefPubMedGoogle Scholar
  35. [35]
    Noda SE, El-Jawahri A, Patel D, Lautenschlaeger T, Siedow M, Chakravarti A. Molecular advances of brain tumors in radiation oncology. Semin Radiat Oncol 2009, 19: 171–178.CrossRefPubMedGoogle Scholar
  36. [36]
    Li H, Li Z, Xu YM, Wu Y, Yu KK, Zhang C, et al. Epigallocatechin-3-gallate induces apoptosis, inhibits proliferation and decreases invasion of glioma cell. Neurosci Bull 2014, 30: 67–73.CrossRefPubMedGoogle Scholar
  37. [37]
    Becher OJ, Hambardzumyan D, Fomchenko EI, Momota H, Mainwaring L, Bleau AM, et al. Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas. Cancer Res 2008, 68: 2241–2249.CrossRefPubMedGoogle Scholar
  38. [38]
    Zhu D, Tan KS, Zhang X, Sun A Y, Sun GY, Lee JC. Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. J Cell Sci 2005, 118: 3695–3703.CrossRefPubMedGoogle Scholar
  39. [39]
    Lai CP, Bechberger JF, Thompson RJ, MacVicar BA, Bruzzone R, Naus CC. Tumor-suppressive effects of pannexin 1 in C6 glioma cells. Cancer Res 2007, 67: 1545–1554.CrossRefPubMedGoogle Scholar
  40. [40]
    Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H. The brain tumor microenvironment. Glia 2012, 60: 502–514.CrossRefPubMedGoogle Scholar
  41. [41]
    Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408: 239–247.CrossRefPubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, PKU-IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina

Personalised recommendations