Efficacy of Polymethoxylated Flavonoids from Citrus depressa Extract on Alcohol-induced Liver Injury in Mice

  • Eun Young Lee
  • Se Ho Kim
  • Sukkum Ngullie Chang
  • Jin-Hyung Lee
  • Buyng Su Hwang
  • Je-Tae Woo
  • Sun Chul Kang
  • Jintae LeeEmail author
  • Jae Gyu ParkEmail author
Research Paper


Alcohol consumption causes the accumulation of reactive oxygen species in liver, which leads to alcoholic fatty liver and hepatocyte injury. In this study, we investigated the effects of an ethanolic Citrus depressa extract and those of its main components on alcohol-induced liver damage using a mouse model. Four polymethoxylated flavonoids, namely, nobiletin, tangeretin, 5-O-demethylnobiletin, and sinensetin, were isolated from C. depressa extract. Treatment of ethanol fed mice with C. depressa extract, nobiletin, tangeretin, or 5-O-demethylnobiletin at 300 mg/kg for 8 weeks by oral administration alleviated the accumulation of lipid droplets in liver and significantly decreased the serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) (markers of liver damage). Also, in mice treated with ethanol plus nobiletin, tangeretin, or 5-O-demethylnobiletin, liver level of glutathione (an antioxidant) increased whereas levels of tumor necrosis factor-alpha (TNF-α), hepatic malondialdehyde, and hepatic cytochrome P450 2E1 (CYP2E1) mRNA decreased as compared with ethanol fed controls. These findings suggest C. depressa extract and polymethoxylated flavonoids had a protective effect on alcohol-induced liver injury, and that the mechanism involved is related to the regulation of hepatic CYP2E1-mediated oxidative stress.


alcoholic fatty liver CYP2E1 flavonoids hepatocyte injury nobiletin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by a grant from the Nakdonggang National Institute of Biological Resources (NNIBR) funded by the Ministry of Environment (MOE) of the Republic of Korea (NNIBR201902105) and by a grant from the Ministry of SMEs and Startups (MSS) under the “Regional Specialized Industry Development Program (P0004934)” supervised by the Korea Institute for Advancement of Technology (KIAT).

Supplementary material

12257_2019_310_MOESM1_ESM.pdf (507 kb)
Supplementary material, approximately 508 KB.


  1. 1.
    Arteel, G. E. (2003) Oxidants and antioxidants in alcohol-induced liver disease. Gastroenterology. 124: 778–790.CrossRefGoogle Scholar
  2. 2.
    Gao, B. and R. Bataller (2011) Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. 141: 1572–1585.CrossRefGoogle Scholar
  3. 3.
    Beier, J. I. and C. J. McClain (2010) Mechanisms and cell signaling in alcoholic liver disease. Biol. Chem. 391: 1249–1264.CrossRefGoogle Scholar
  4. 4.
    Rouach, H., V. Fataccioli, M. Gentil, S. W. French, M. Morimoto, and R. Nordmann (1997) Effect of chronic ethanol feeding on lipid peroxidation and protein oxidation in relation to liver pathology. Hepatology. 25: 351–355.CrossRefGoogle Scholar
  5. 5.
    Tripoli, E., M. La Guardia, S Giammanco, D. Di Majo, and M. Giammanco (2007) Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 104: 466–479.CrossRefGoogle Scholar
  6. 6.
    Benavente-Garcia, O. and J. Castillo (2008) Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem. 56: 6185–6205.CrossRefGoogle Scholar
  7. 7.
    Wang, F., J. C. Liu, R. J. Zhou, X. Zhao, M. Liu, H. Ye, and M. L. Xie (2017) Apigenin protects against alcohol-induced liver injury in mice by regulating hepatic CYP2E1-mediated oxidative stress and PPARalpha-mediated lipogenic gene expression. Chem. Biol. Interact. 275: 171–177.CrossRefGoogle Scholar
  8. 8.
    Dzoyem, J. P., A. H. L. Nkuete, B. Ngameni, and J. N. Eloff (2017) Anti-inflammatory and anticholinesterase activity of six flavonoids isolated from Polygonum and Dorstenia species. Arch. Pharm. Res. 40: 1129–1134.CrossRefGoogle Scholar
  9. 9.
    Lu. Y. and A. I. Cederbaum (2008) CYP2E1 and oxidative liver injury by alcohol. Free Radic. Biol. Med. 44: 723–738.CrossRefGoogle Scholar
  10. 10.
    Nyblom, H., U. Berggren, J. Balldin, and R. Olsson (2004) High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol Alcohol. 39: 336–339.CrossRefGoogle Scholar
  11. 11.
    Schwabe, R. F. and D. A. Brenner (2006) Mechanisms of liver injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 290: G583–G589.CrossRefGoogle Scholar
  12. 12.
    Hase, K., M. Ohsugi, Q. Xiong, P. Basnet, S. Kadota, and T. Namba (1997) Hepatoprotective effect of Hovenia dulcis THUNB. on experimental liver injuries induced by carbon tetrachloride or D-galactosamine/lipopolysaccharide. Biol. Pharm. Bull. 20: 381–385.CrossRefGoogle Scholar
  13. 13.
    Wang, M., P. Zhu, C. Jiang, L. Ma, Z. Zhang, and X. Zeng (2012) Preliminary characterization, antioxidant activity in vitro and hepatoprotective effect on acute alcohol-induced liver injury in mice of polysaccharides from the peduncles of Hovenia dulcis. Food Chem. Toxicol. 50: 2964–2970.CrossRefGoogle Scholar
  14. 14.
    Ito, Y., E. Hikiyama, S. Yamada, J. T. Woo, Y. Teruya, K. Sugaya, S. Nishijima, H. Wakuda, and K. Shinozuka (2016) Medicinal composition for preventing or improving dysuria, antagonist against dysuria-related receptor, and method for preventing or improving dysuria using medicinal composition or antagonist. WO Patent 2016075960.Google Scholar
  15. 15.
    Chen, J., A. M. Montanari, and W. W. Widmer (1997) Two new polymethoxylated flavones, a class of compounds with potential anticancer activity, isolated from cold pressed dancy tangerine peel oil solids. J. Agric. Food Chem. 45: 364–368.CrossRefGoogle Scholar
  16. 16.
    Nagase, H., N. Omae, A. Omori, O. Nakagawasai, T. Tadano, A. Yokosuka, Y. Sashida, Y. Mimaki, T. Yamakuni, and Y. Ohizumi (2005) Nobiletin and its related flavonoids with CRE-dependent transcription-stimulating and neuritegenic activities. Biochem. Biophys. Res. Commun. 337: 1330–1336.CrossRefGoogle Scholar
  17. 17.
    Bertola, A., S. Mathews, S. H. Ki, H. Wang, and B. Gao (2013) Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat. Protoc. 8: 627–637.CrossRefGoogle Scholar
  18. 18.
    Cardiff, R. D., C. H. Miller, and R. J. Munn (2014) Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb. Protoc. 2014: 655–658.PubMedGoogle Scholar
  19. 19.
    Sher, Y. and M. Hung (2013) Blood AST, ALT and UREA/BUN level analysis. Bio. Protoc. 3: e931.CrossRefGoogle Scholar
  20. 20.
    Idriss, H. T. and J. H. Naismith (2000) TNF alpha and the TNF receptor superfamily: Structure-function relationship(s). Microsc. Res. Tech. 50: 184–195.CrossRefGoogle Scholar
  21. 21.
    Meister, A. (1994) Glutathione-ascorbic acid antioxidant system in animals. J. Biol. Chem. 269: 9397–9400.PubMedGoogle Scholar
  22. 22.
    Hoff, H. F. and J. O'Neil (1993) Structural and functional changes in LDL after modification with both 4-hydroxynonenal and malondialdehyde. J. Lipid Res. 34: 1209–1217.PubMedGoogle Scholar
  23. 23.
    Mahmood, T. and P. C. Yang (2012) Western blot: technique, theory, and trouble shooting. N Am. J. Med. Sci. 4: 429–434.CrossRefGoogle Scholar
  24. 24.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.CrossRefGoogle Scholar
  25. 25.
    Crawford, J. M. (2012) Histologic findings in alcoholic liver disease. Clin. Liver Dis. 16: 699–716.CrossRefGoogle Scholar
  26. 26.
    Lefkowitch, J. H. (2005) Morphology of alcoholic liver disease. Clin. Liver Dis. 9: 37–53.CrossRefGoogle Scholar
  27. 27.
    Mulvihill, E. E. and M. W. Huff (2012) Protection from metabolic dysregulation, obesity, and atherosclerosis by citrus flavonoids: activation of hepatic PGC1α-mediated fatty acid oxidation. PPAR Res. 2012: 857142.CrossRefGoogle Scholar
  28. 28.
    Lee, Y. S., B. Y. Cha, S. S. Choi, B. K. Choi, T. Yonezawa, T. Teruya, K. Nagai, and J. T. Woo (2013) Nobiletin improves obesity and insulin resistance in high-fat diet-induced obese mice. J. Nutr. Biochem. 24: 156–162.CrossRefGoogle Scholar
  29. 29.
    Akachi, T., Y. Shiina, Y. Ohishi, T. Kawaguchi, H. Kawagishi, T. Morita, M. Mori, and K. Sugiyama (2010) Hepatoprotective effects of flavonoids from shekwasha (Citrus depressa) against D-galactosamine-induced liver injury in rats. J. Nutr. Sci. Vitaminol. 56: 60–67.CrossRefGoogle Scholar
  30. 30.
    Morin, B., L. A. Nichols, K. M. Zalasky, J. W. Davis, J. A. Manthey, and L. J. Holland (2008) The citrus flavonoids hesperetin and nobiletin differentially regulate low density lipoprotein receptor gene transcription in HepG2 liver cells. J. Nutr. 138: 1274–1281.CrossRefGoogle Scholar
  31. 31.
    Mulvihill, E. E., J. M. Assini, J. K. Lee, E. M. Allister, B. G. Sutherland, J. B. Koppes, C. G. Sawyez, J. Y. Edwards, D. E. Telford, A. Charbonneau, P. St-Pierre, A. Marette, and M. W. Huff (2011) Nobiletin attenuates VLDL overproduction, dyslipidemia, and atherosclerosis in mice with diet-induced insulin resistance. Diabetes. 60: 1446–1457.CrossRefGoogle Scholar
  32. 32.
    Choi, B. K., T. W. Kim, D. R. Lee, W. H. Jung, J. H. Lim, J. Y. Jung, S. H. Yang, and J. W. Suh (2015) A polymethoxy flavonoids-rich Citrus aurantium extract ameliorates ethanolinduced liver injury through modulation of AMPK and Nrf2- related signals in a binge drinking mouse model. Phytother. Res. 29: 1577–1584.CrossRefGoogle Scholar
  33. 33.
    Ceni, E., T. Mello, and A. Galli (2014) Pathogenesis of alcoholic liver disease: role of oxidative metabolism. World J. Gastroenterol. 20: 17756–17772.CrossRefGoogle Scholar
  34. 34.
    Kawaratani, H., T. Tsujimoto, A. Douhara, H. Takaya, K. Moriya, T. Namisaki, R. Noguchi, H. Yoshiji, M. Fujimoto, and H. Fukui (2013) The effect of inflammatory cytokines in alcoholic liver disease. Mediators Inflamm. 2013: 495156.CrossRefGoogle Scholar
  35. 35.
    Zhang, A., H. Sun, and X. Wang (2013) Recent advances in natural products from plants for treatment of liver diseases. Eur. J. Med. Chem. 63: 570–577.CrossRefGoogle Scholar
  36. 36.
    Chen, M. F., Y. Y. Zhang, M. Di He, C. Y. Li, C. X. Zhou, P. Z. Hong, and Z. J. Qian (2019) Antioxidant peptide purified from enzymatic hydrolysates of Isochrysis Zhanjiangensis and its protective effect against ethanol induced oxidative stress of HepG2 cells. Biotechnol. Bioprocess Eng. 24: 308–317.CrossRefGoogle Scholar
  37. 37.
    Lee, H., I. S. Suh, M. Woo, M. J. Kim, Y. H. Jung, and Y. O. Song (2019) Beneficial effects of desalinated magma seawater in ameliorating thioacetamide-induced chronic hepatotoxicity. Biotechnol. Bioprocess Eng. 24: 126–134.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  • Eun Young Lee
    • 1
  • Se Ho Kim
    • 1
  • Sukkum Ngullie Chang
    • 2
  • Jin-Hyung Lee
    • 1
  • Buyng Su Hwang
    • 3
  • Je-Tae Woo
    • 4
  • Sun Chul Kang
    • 2
  • Jintae Lee
    • 1
    Email author
  • Jae Gyu Park
    • 5
    Email author
  1. 1.School of Chemical EngineeringYeungnam UniversityGyeongsanKorea
  2. 2.Department of BiotechnologyDaegu UniversityGyeongsanKorea
  3. 3.Nakdonggang National Institute of Biological ResourcesSangjuKorea
  4. 4.Okinawa Research Center Co. LtdOkinawaJapan
  5. 5.Advanced Bio Convergence Center (ABCC)Pohang Technopark FoundationPohangKorea

Personalised recommendations