Biotechnology and Bioprocess Engineering

, Volume 24, Issue 4, pp 622–631 | Cite as

Characterization and Identification of Cellulose-degrading Bacteria Isolated from a Microbial Fuel Cell Reactor

  • Sami Flimban
  • Sang-Eun Oh
  • Jin Ho Joo
  • Khalid A. HusseinEmail author
Research Paper Applied Microbiology


Electricity can be directly biogenerated by bacteria in a microbial fuel cell (MFC) using many different biodegradable wastes as substrate. When cellulose is used as a substrate, the cellulolytic and electrogenic activities require a microbial consortium for energy generation. In this study, cellulose-degrading bacteria were isolated from an MFC using CMC (carboxymethylcellulose) agar medium and their cellulolytic activity was assessed. Cellulolytic bacteria isolated from the MFC were characterized and identified based on their phenotypic characteristics and analysis of their 16S rRNA genes sequence. Of thirty-two isolates, only ten cellulolytic bacterial strains were successfully isolated from the MFC reactor under aerobic conditions. The bacterial isolates had a cellulolytic index between 3.63 to 8.96 U mL-1. The bacterial strain SAM3a demonstrated high identity (99% via 16S-rRNA sequencing) to Staphylococcus saprophyticus which showed the highest CMCase activity (8.96) 0.34U mL-1). Enterobacter cancerogenus JCT-55 showed the next highest CMCase activity (8.34 ± 0.56 U mL-1); S. epidermidis BAB-2554 showed the lowest CMCase activity (3.63) 0.05 U mL-1). In the MFC, the genus Staphylococcus was found to be the most dominant group of cellulose-degrading bacteria which used rice straw as a carbon source. In this study, Escherichia coli, S. saprophyticus, Enterobacter cancerogenus, S. epidermidis, S. hominis, Bacillus subtilis, L. murinus, S. haemolyticus, S. epidermidis, and S. epidermidis were found to possess cellulolytic activity.


cellulolytic bacteria electrogenic activities CMCase activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ010848)” Rural Development Administration, Republic of Korea.


  1. 1.
    Omer, A. M. (2017) Biomass for power generation: Clean energies for sustainable development and environment. Int. J. Waste Resour. 7: e1000292.Google Scholar
  2. 2.
    Owusu, P. A. and S. Asumadu-Sarkodie (2016) A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 3: 1167990.Google Scholar
  3. 3.
    Ben-Iwo, J., V. Manovic, and P. Longhurst (2016) Biomass resources and biofuels potential for the production of transportation fuels in Nigeria. Renew. Sust. Energ. Rev. 63: 172–192.CrossRefGoogle Scholar
  4. 4.
    Mazzolia, R. (2012) Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers' tricks. Comput. Struct. Biotechnol. J. 3: e201210007CrossRefGoogle Scholar
  5. 5.
    Saini, J. K., R. Saini, and L. Tewari (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech. 5: 337–353.Google Scholar
  6. 6.
    Kumar, A. K. and S. Sharma (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour. Bioprocess. 4: 7.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Raju, E. V. N., G. Divakar, T. Rajesh, A. Ghazi, and A. Pourgharashi (2013) Screening and isolation of cellulase producing Bacteria from dump yards of vegetable wastes. World J. Pharm. Pharm. Sci. 3: 428–435.Google Scholar
  8. 8.
    Shankar, T., V. Mariappan, and L. Isaiarasu (2011) Screening cellulolytic bacteria from the mid-gut of the popular composting earthworm, Eudrilus eugeniae (Kinberg). World J. Zool. 6: 142–148.Google Scholar
  9. 9.
    Haruta, S., S. Kato, Z. Cui, M. Ishii, and Y. Igarashi (2003) Cellulose degrading microbial community. JSP-SNRCT/DOST/ LIPI/VCC Multilateral Cooperative Research Program in the Field of Biotechnology. Bangkok, Thailand.Google Scholar
  10. 10.
    Singh, R., M. Kumar, A. Mittal, and P. K. Mehta (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech. 6: 174–189.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Menendez, E., P. Garcia-Fraile, and R. Rivas (2015) Biotechnological applications of bacterial cellulases. AIMS Bioeng 2: 163–182.CrossRefGoogle Scholar
  12. 12.
    Bai, S., M. R. Kumar, D. M. Kumar, P. Balashanmugam, M. D. B. Kumaran, and P. T. Kalaichelvan (2012) Cellulase production by Bacillus subtilis isolated from cow dung. Arch. Appl. Sci. Res. 4: 269–279.Google Scholar
  13. 13.
    Li, X., H. Yang, B. Roy, D. Wang, W. Yue, L. Jiang, E. Y. Park, and Y. Miao (2009) The most stirring technology in future: cellulase enzyme and biomass utilization. Afr J. Biotechnol. 8: 2418–2422.Google Scholar
  14. 14.
    Immanuel, G, R. Dhanusa, P. Prema, and A. Palavesam (2006) Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. Int. J. Environ. Sci. Technol. 3: 25–34.CrossRefGoogle Scholar
  15. 15.
    Bhat, M. K. (2000) Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 355–383.CrossRefPubMedGoogle Scholar
  16. 16.
    Lee, S. M. and Y. M. Koo (2001) Pilot-scale production of cellulase using Trichoderma reesei Rut C-30 in fed-batch mode. J. Microbiol. Biotechnol. 11: 229–233.Google Scholar
  17. 17.
    Flimban, S. G. A., S. H. A. Hassan, M. M. Rahman, and S. E. Oh (2018) The effect of Nafion membrane fouling on the power generation of a microbial fuel cell. Int. J. Hydrogen Energy. Google Scholar
  18. 18.
    Gobalakrishnan, R and K. Sivakumar (2017) Systematic characterization of potential cellulolytic marine actinobacteria Actinoalloteichus sp. MHA15. Biotechnol. Rep. 13: 30–36.CrossRefGoogle Scholar
  19. 19.
    Imran, M., Z. Anwar, M. Irshad, M. J. Asad, and H. Ashfaq (2016) Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry: a review. Adv Enzyme Res. 4: 44–55.CrossRefGoogle Scholar
  20. 20.
    Sethi, S., A. Datta, B. L. Gupta, and S. Gupta (2013) Optimization of Cellulase Production from Bacteria Isolated from Soil. ISRN Biotechnol. Article ID 985685.Google Scholar
  21. 21.
    Baysal, O. and A. Yildiz (2017) Bacillus subtilis: an industrially important microbe for enzymes production. EC Microbiol. 5: 148–156.CrossRefGoogle Scholar
  22. 22.
    Poszytek, K., M. Ciezkowska, A. Sklodowska, and L. Drewniak (2016) Microbial consortium with high cellulolytic activity (MCHCA) for enhanced biogas production. Front. Microbiol. 7: 324.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pham, C. A., S. J. Jung, N. T. Phung, J. Lee, I. S. Chang, B. H. Kim, H. Yi, and J. Chun (2003) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila isolated from a microbial fuel cell. FEMS Microbiol. Lett. 223: 129–134.CrossRefPubMedGoogle Scholar
  24. 24.
    Rabaey, K., N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70: 5373–5382.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Xing, D., Y. Zuo, S. Cheng, J. M. Regan, and B. E. Logan (2008) Electricity generation by Rhodopseudomonas palustris DX-1. Environ. Sci. Technol. 42: 4146–4151.CrossRefPubMedGoogle Scholar
  26. 26.
    Chaudhuri, S. K. and D. R. Lovley (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21: 1229–1232.CrossRefPubMedGoogle Scholar
  27. 27.
    Park, H. S., B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, I. S. Chang, Y. K. Park, and H. I. Chang (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7: 297–306.CrossRefGoogle Scholar
  28. 28.
    Kim, B. H., H. J. Kim, M. S. Hyun, and D. H. Park (1999) Direct electrode reaction of Fe (III) reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 127–131.Google Scholar
  29. 29.
    Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30: 145–152.CrossRefGoogle Scholar
  30. 30.
    Bond, D. R. and D. R. Lovley (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548–1555.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley (2002) Electrode-reducing microorganisms that harvest energy from marine sediment. Science. 295: 483–485.CrossRefPubMedGoogle Scholar
  32. 32.
    Holmes, D. E., D. R. Bond, and D. R. Lovley (2004) Electron transfer by Desulfobulbus propionicus to Fe (III) and graphite electrodes. Appl. Environ. Microbiol. 70: 1234–1237.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bond, D. R. and D. R. Lovley (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71: 2186–2189.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zuo, Y., D. Xing, J. M. Regan, and B. E. Logan (2008) Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl. Environ. Microbiol. 74: 3130–3137.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ren, Z., T. E. Ward, and J. M. Regan (2007) Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ. Sci. Technol. 14: 4781–4786.CrossRefGoogle Scholar
  36. 36.
    Rezaei, E, T. L. Richard, and B. E. Logan (2008) Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell. Biotechnol. Bioeng. 101: 1163–1169.CrossRefPubMedGoogle Scholar
  37. 37.
    Rismani-Yazdi, H., A. D. Christy, B. A. Dehority, M. Morrison, Z. Yu, and O. H. Tuovinen (2007) Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol. Bioeng. 97: 1398–1407.CrossRefPubMedGoogle Scholar
  38. 38.
    Oh, S. E., B. Min, and B. E. Logan (2004) Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 38: 4900–4904.CrossRefPubMedGoogle Scholar
  39. 39.
    Xia, H., G. Khanal, B. C. Strachan, E. Voros, N. Z. Piety, S. C. Gifford, and S. S. Shevkoplyas (2017) Washing in hypotonic saline reduces the fraction of irreversibly-damaged cells in stored blood: a proof-of-concept study. Blood Transfus. 15: 463–471.PubMedPubMedCentralGoogle Scholar
  40. 40.
    De Ley, J., J. Swings, and F. Gossele (1984) Genus 1. Acetobacter Beijerinck 1898, 215. pp. 268–74. In: N. R. Krieg and J. G. Holt (eds.) Bergey's Manual of Systematic Bacteriology, Vol. 1, (9th ed.) The Williams & Wilkins Co., Baltimore, USA.Google Scholar
  41. 41.
    Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876–4882.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Saitou, N. and M. Nei (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.PubMedGoogle Scholar
  43. 43.
    Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 39: 783–791.CrossRefPubMedGoogle Scholar
  44. 44.
    National Committee for Clinical Laboratory Standards (1997). Reference method for broth dilution antifungal susceptibility testing of yeasts, approved standard NCCLS M27-A. National Committee for Clinical Laboratory Standards, Wayne, PA, USA.Google Scholar
  45. 45.
    Sambrook, J. and D. W. Russell (2001) Molecular Cloning: A Laboratory Manual. 3rd ed., pp. 20–25. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.Google Scholar
  46. 46.
    Lu, W. J., H. T. Wang, Y. F. Nie, Z. C. Wang, D. Y. Huang, X. Y. Qiu, and J. C. Chen (2004) Effect of inoculating flower stalks and vegetable waste with ligno-cellulolytic microorganisms on the composting process. J. Environ. Sci. Health. B. 39: 871–887.CrossRefPubMedGoogle Scholar
  47. 47.
    Lisdiyanti, P., E. Suyanto, N. F. Gusmawati, and W. U. Rahayu (2012) Isolation and characterization of cellulose produced by cellulolytic bacteria from peat soil of Ogan Komering Ilir, South Sumatera. Int. J. Environ. Bioener 3: 145–153.Google Scholar
  48. 48.
    Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.CrossRefGoogle Scholar
  49. 49.
    Gupta, P., K. Samant, and A. Sahu (2012) Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int. J. Microbiol. Article ID 578925Google Scholar
  50. 50.
    SAS Institute Inc. (2011) The SAS 10.2 software. Statistical Analysis System for Windows [Software]. Cary, NC. SAS.Google Scholar
  51. 51.
    Abd Elrsoul, R. M. M. A. and S. E. A. Bakhiet (2018) Optimization of factors influencing cellulase production by some indigenous isolated fungal species. Jordan J. Biol. Sci. 11: 31–36.Google Scholar
  52. 52.
    Sheng, P., S. Huang, Q. Wang, A. Wang, and H. Zhang (2012) Isolation, screening, and optimization of the fermentation conditions of highly cellulolytic bacteria from the hindgut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Appl. Biochem. Biotechnol. 167: 270–284.CrossRefPubMedGoogle Scholar
  53. 53.
    Woo, S. L., M. Ruocco, F. Vinale, M. Nigro, R. Marra, N. Lombardi, A. Pascale, S. Lanzuise, G. Manganiello, and M. Lorito (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol. J. 8: 71–126.CrossRefGoogle Scholar
  54. 54.
    Rezaei, E., D. Xing, R. Wagner, J. M. Regan, T. L. Richard, and B. E. Logan (2009) Simultaneous Cellulose Degradation and Electricity Production by Enterobacter cloacae in a microbial fuel cell. Appl. Environ. Microbiol. 75: 3673–3678.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sami, A. J., M. Awais, and A. R. Shakoori (2008) Preliminary studies on the production of endo-1,4-P-D-glucanases activity produced by Enterobacter cloacae. Afr. J. Biotechnol. 7: 1318–1322.Google Scholar
  56. 56.
    Lokapirnasari, W. P., D. S. Nazar, T. Nurhajati, K. Supranianondo, and A. B. Yulianto (2015) Production and assay of cellulolytic enzyme activity of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya abbatoir, Indonesia. Vet. World. 8: 367–371.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Khianngam, S., Y. Pootaeng-on, T. Techakriengkrai, and S. Tanasupawat (2014) Screening and identification of cellulase producing bacteria isolated from oil palm meal. J. Appl. Pharm. Sci. 4: 90–96.Google Scholar
  58. 58.
    Hussein, K. A. and J. H. Joo (2013) Heavy metal resistance of bacteria and its impact on the production of antioxidant enzymes. Afr. J. Microbiol. Res. 7: 2288–2296.CrossRefGoogle Scholar
  59. 59.
    Thomas, L., H. Ram, and V. P. Singh (2018) Inducible cellulase production from an organic solvent tolerant Bacillus sp. SV1 and evolutionary divergence of endoglucanase in different species of the genus Bacillus. Braz. J. Microbiol. 49: 429–442.CrossRefPubMedGoogle Scholar
  60. 60.
    Kopecky, J., M. Nesvorna, M., Mareckova-Sagova, and J. Hubert (2014) The effect of antibiotics on associated bacterial community of stored product mites. PLoS One 9: ell2919CrossRefGoogle Scholar
  61. 61.
    Lundgren, J. G and R. M. Lehman (2010) Bacterial gut symbionts contribute to seed digestion in an omnivorous beetle. PLoS One 5: el0831.CrossRefGoogle Scholar
  62. 62.
    Stewart, C. S. and S. H. Duncan (1985) The effect of avoparcin on cellulolytic bacteria of the ovine rumen. J. Gen. Microbiol. 131:427–435.Google Scholar
  63. 63.
    Szegi, J. and H. G. El-Din (1977) Sensitivity of cellulolytic bacteria to antibiotics. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 132: 388–391.PubMedGoogle Scholar
  64. 64.
    Turutoglu, H., S. Ercelik, and D. Ozturk (2006) Antibiotic resistance of Staphylococcus aureus and coagulase-negative staphylococci isolated from Bovine Mastitis. Bull. Vet. Inst. Pulawy 50: 41–45.Google Scholar
  65. 65.
    Narasimha, G, A. Sridevi, B. Viswanath, M. S. Chandra, and R. B. Rajasekhar (2006) Nutrient effects on production of cellulolytic enzymes by Aspergillus niger. Afr. J. Biotechnol. 5: 472–476.Google Scholar
  66. 66.
    Poorna, C. A. and P. Prema (2007) Production of cellulase-free endoxylanase from novel alkalophilic thermotolerant Bacillus pumilus by solid-state fermentation and its application in wastepaper recycling. Bioresour Technol. 98: 485–490.CrossRefGoogle Scholar
  67. 67.
    Niranjane, A. P., P. Madhou, and T. W. Stevenson (2007) The effect of carbohydrate carbon sources on the production of cellulase by Phlebia gigantea. Enzyme Microb. Technol. 40: 1464–1468.CrossRefGoogle Scholar
  68. 68.
    Sreeja, S. J, P. W. J. Malar, F. R S. Joseph, T. Steffi, G. Immanuel, and A. Palavesam (2013) Optimization of cellulase production by Bacillus altitudinis APS MSU and Bacillus licheniformis APS2 MSU, gut isolates of fish Etroplus suratensis. IJOART. 2: 401–406.Google Scholar
  69. 69.
    Kuhad, R. C., R. Gupta, and A. Singh (2011) Microbial cellulases and their industrial applications. Enzyme Res. Article ID 280696.Google Scholar
  70. 70.
    Chen, H. (2014) Biotechnology of Lignocellulose: Theory and Practice. 1st ed., p. 510. Chemical Industry Press, Beijing and Springer Science+Business Media DordrechtCrossRefGoogle Scholar
  71. 71.
    El-Naggar, N. E., S. Deraz, and A. Khalil (2014) Bioethanol production from lignocellulosic feedstocks based on enzymatic hydrolysis: current status and recent developments. Biotechnology. 13: 1–21.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  • Sami Flimban
    • 1
    • 2
  • Sang-Eun Oh
    • 1
  • Jin Ho Joo
    • 1
  • Khalid A. Hussein
    • 1
    • 3
    Email author
  1. 1.Department of Biological EnvironmentKangwon National UniversityChuncheonKorea
  2. 2.Center of excellence in Environmental StudiesKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Department of Botany and MicrobiologyFaculty of Science, Assiut UniversityAssiutEgypt

Personalised recommendations