Advertisement

Biotechnology and Bioprocess Engineering

, Volume 24, Issue 3, pp 529–535 | Cite as

Characteristics and Mechanism of Microwave-assisted Drying of Amorphous Paclitaxel for Removal of Residual Solvent

  • Won-Seok Jang
  • Jin-Hyun KimEmail author
Research Paper
  • 15 Downloads

Abstract

We investigated the characteristics and mechanism of microwave-assisted drying of amorphous paclitaxel for the removal of residual solvent, acetonitrile. The removal efficiency of residual acetonitrile increased with increasing drying temperature from 35 to 55°C. When the experimental data were applied to typical kinetic models, the Page model was determined to be the most suitable. Thermodynamic parameters revealed the spontaneous and endothermic nature of microwave-assisted drying. The effective diffusion coefficient of acetonitrile (0.865 × 10−8∼ 1.553 × 10−8 m2/s) and the convective mass transfer coefficient (2.138 × 10−7∼7.656 × 10−7 m/s) increased with increasing drying temperature. The small Biot number (0.001975∼ 0.003939) indicated that the process of mass transfer was externally controlled.

Keywords

amorphous paclitaxel microwave-assisted drying characteristics effective diffusivity mass transfer coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Korean Ministry of Education, Science and Technology (Grant Number: 2018R1D1A3A03000683).

References

  1. 1.
    Kim, J. H. (2006) Paclitaxel: Recovery and purification in commercialization step. Korean J. Biotechnol. Bioeng. 21: 1–10.Google Scholar
  2. 2.
    Park, S. H. and J. H. Kim (2018) Isotherm, kinetic, and thermodynamic characteristics for adsorption of 2,5-xylenol onto activated carbon. Biotechnol. Bioprocess Eng. 23: 541–549.CrossRefGoogle Scholar
  3. 3.
    Kim, G. J. and J. H. Kim (2015) A simultaneous microwave-assisted extraction and adsorbent treatment process under acidic conditions for recovery and separation of paclitaxel from plant cell cultures. Korean J. Chem. Eng. 32: 1023–1028.CrossRefGoogle Scholar
  4. 4.
    Hsiao, J. R., S. F. Leu, and B. M. Huang (2009) Apoptotic mechanism of paclitaxel-induced cell death in human head and neck tumor cell lines. J. Oral Pathol. Med. 38: 188–197.CrossRefGoogle Scholar
  5. 5.
    Baloglu, E. and D. G. L. Kingston (1999) A new semisynthesis of paclitaxel from baccatin III. J. Nat. Prod. 62: 1003–1010.CrossRefGoogle Scholar
  6. 6.
    Żwawiak, J. and L. Zaprutko (2014) A brief history of taxol. J. Med. Sci. 83: 47–52.Google Scholar
  7. 7.
    Choi, H. K., J. S. Son, G. H. Na, S. S. Hong, Y. S. Park, and J. Y. Song (2002) Mass production of paclitaxel by plant cell culture. Korean J. Plant Biotechnol. 29: 59–62.CrossRefGoogle Scholar
  8. 8.
    Kim, Y. S. and J. H. Kim (2019) Isotherm, kinetic and thermodynamic studies on the adsorption of paclitaxel onto Sylopute. J. Chem. Thermodyn. 130: 104–113.CrossRefGoogle Scholar
  9. 9.
    Lee, C. G. and J. H. Kim (2015) Improved drying method for removal of residual solvents from paclitaxel by pre-treatment with ethanol and water. Process Biochem. 50: 1031–1036.CrossRefGoogle Scholar
  10. 10.
    Choi, M. G. and J. H. Kim (2017) Effect of drying methods on removal of residual solvents from solvent-induced amorphous paclitaxel. Korean J. Chem. Eng. 34: 3041–3047.CrossRefGoogle Scholar
  11. 11.
    Prakash, K., R. Jieun, H. M. Kim, I. S. Kim, J. T. Kim, H. I. Kim, J. M. Cho, G. A. Yun, and J. H. Lee (2014) Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci. 9: 304–316.CrossRefGoogle Scholar
  12. 12.
    Liggins, R. T., W. L. Hunter, and H. M. Burt (1997) Solid-state characterization of paclitaxel. J. Pharm. Sci. 86: 1458–1463.CrossRefGoogle Scholar
  13. 13.
    Yoon, J. W. and J. H. Kim (2011) Establishment of a solvent map for formation of crystalline and amorphous paclitaxel by solvent evaporation process. Korean J. Chem. Eng. 28: 1918–1923.CrossRefGoogle Scholar
  14. 14.
    International Conference on Harmonisation (1997) Guidance on impurities: residual solvents. Fed. Regist. 62: 67377–67388.Google Scholar
  15. 15.
    Lee, J. Y. and J. H. Kim (2013) Removal of residual methylene chloride from homoharringtonine by pre-treatment with ethanol. Process Biochem. 48: 1809–1813.CrossRefGoogle Scholar
  16. 16.
    Kim, J. H. (2018) Estimation of diffusion coefficient and mass transfer coefficient in microwave-assisted drying of paclitaxel for removal of residual methylene chloride. Korean Chem. Eng. Res. 56: 430–434.Google Scholar
  17. 17.
    Lee, J. Y. and J. H. Kim (2013) Microwave-assisted drying of paclitaxel for removal of residual solvents. Process Biochem. 48: 545–550.CrossRefGoogle Scholar
  18. 18.
    Lee, C. G. and J. H. Kim (2017) A kinetic and thermodynamic study of fractional precipitation of paclitaxel from Taxus chinensis. Process Biochem. 59: 216–222.CrossRefGoogle Scholar
  19. 19.
    Cheung, Y. C. and J. Y. Wu (2013) Kinetic models and process parameters for ultrasound-assisted extraction of water-soluble components and polysaccharides from a medicinal fungus. Biochem. Eng. J. 79: 214–220.CrossRefGoogle Scholar
  20. 20.
    Kim, H. S. and J. H. Kim (2017) Kinetics and thermodynamics of microwave-assisted drying of paclitaxel for removal of residual methylene chloride. Process Biochem. 56: 163–170.CrossRefGoogle Scholar
  21. 21.
    Yoo, K. W. and J. H. Kim (2018) Kinetics and mechanism of ultrasound-assisted extraction of paclitaxel from Taxus chinensis. Biotechnol. Bioprocess Eng. 23: 532–540.CrossRefGoogle Scholar
  22. 22.
    Lee, S. H. and J. H. Kim (2019) Kinetic and thermodynamic characteristics of microwave-assisted extraction for the recovery of paclitaxel from Taxus chinensis. Process Biochem. 76: 187–193.CrossRefGoogle Scholar
  23. 23.
    Hata, H., S. Saeki, T. Kimura, Y. Sugahara, and K. Kuroda (1999) Adsorption of taxol into ordered mesoporous silica with various pore diameters. Chem. Mater. 11: 1110–1119.CrossRefGoogle Scholar
  24. 24.
    Darvishi, H., A. R. Asl, A. Asghari, G. Najafi, and H. A. Gazori (2013) Mathematical modeling, moisture diffusion, energy consumption and efficiency of thin layer drying of potato slices. J. Food Process Technol. 4: 1–6.CrossRefGoogle Scholar
  25. 25.
    Crank, J. (1975) The mathematics of diffusion. 2nd ed., pp. 44–68. Clarendon Press, Oxford, UK.Google Scholar
  26. 26.
    Dincer, I. and M. M. Hussain (2002) Development of a new Bi-Di correlation for solids drying. Int. J. Heat Mass Transf. 45: 3065–3069.CrossRefGoogle Scholar
  27. 27.
    Sahin, A. J., I. Dincer, B. S. Yilbas, and M. M. Hussain (2002) Determination of drying times for regular multi-dimensional objects. Int. J. Heat Mass Transf. 45: 1757–1766.CrossRefGoogle Scholar
  28. 28.
    Bang, S. Y. and J. H. Kim (2017) Isotherm, kinetic, and thermodynamic studies on the adsorption behavior of 10-deacetylpaclitaxel onto Sylopute. Biotechnol. Bioprocess Eng. 22: 620–630.CrossRefGoogle Scholar
  29. 29.
    Prasad, B. E. and K. K. Pandey (2012) Microwave drying of bamboo. Eur. J. Wood Prod. 70: 353–355.CrossRefGoogle Scholar
  30. 30.
    Saha, P. and S. Chowdhury (2011) Insight into adsorption thermodynamics. Thermodynamics, Prof. Mizutani Tadashi (Ed.), ISBN: 978-953-307-544-0, InTech, Available from: http://www.intechopen.com/books/thermodynamics/insight-into-adsorption-thermodynamics.
  31. 31.
    Shin, H. S. and J. H. Kim (2016) Isotherm, kinetic and thermodynamic characteristics of adsorption of paclitaxel onto Daion HP-20. Process Biochem. 51: 917–924.CrossRefGoogle Scholar
  32. 32.
    Sharma, G. P. and S. Prasad (2004) Effective moisture diffusivity of garlic cloves undergoing microwave-convective drying. J. Food Eng. 65: 609–617.CrossRefGoogle Scholar
  33. 33.
    Mirzaee, E., S. Rafiee, A. Keyhani, and Z. Emam-Djomeh (2009) Determining of moisture diffusivity and activation energy in drying of apricots. Res. Agr. Eng. 55: 114–120.CrossRefGoogle Scholar
  34. 34.
    Guiné, R. P. F., M. J. Barroca, and V. Silva (2013) Mathematical modeling, moisture diffusion, energy consumption and efficiency of thin layer drying of potato slices. Int. J. Food Prop. 16: 251–262.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKongju National UniversityCheonanKorea

Personalised recommendations