Advertisement

Biotechnology and Bioprocess Engineering

, Volume 24, Issue 3, pp 507–512 | Cite as

Bioconversion of Genistein to Orobol by Bacillus subtilis Spore Displayed Tyrosinase and Monitoring the Anticancer Effects of Orobol on MCF-7 Breast Cancer Cells

  • Afrouzossadat Hosseini AbariEmail author
  • Maziyar Tayebi
Research Paper
  • 22 Downloads

Abstract

Orobol (5,7,3′,4′-tetrahydroxyisoflavone) is a highly hydroxylated isoflavone, which is rarely found in natural environment. In this study, orobol was produced due to bioconversion of a soybean frequented isoflavone, genistein (4′,5,7-Trihydroxyisoflavone) by an active, stable, reusable genetically immobilized enzyme, the recombinant Bacillus subtilis spore displayed tyrosinase. Thin layer chromatography and high performance liquid chromatography were used to monitor the reaction. The results revealed that 1 mM orobol was produced from 3′-hydroxylation of 1 mM genistein by spore displayed tyrosinase at 37°C during 90 min incubation. To study on anti-proliferative effects of orobol, MCF-7 breast cancer cell viability was determined by MTT method and flow cytometric analysis. The comparison between reduction in cell viabilities in 50 to 500 µM genistein and orobol treated cells revealed that orobol has more remarkable anticancer effects than genistein. Flow cytometric analysis showed more than 87% cytotoxicity in 500 µM orobol treated cells by flow cytometric analysis. To the best of our knowledge this is the first report of the orobol demonstrated potent anticancer activity against MCF-7 breast cancer cell. It is suggested that enzymatic biotransformation of soybean genistein to orobol will be made a new approach to create highly bioactive products usable in food and pharmaceutical industries.

Keywords

orobol genistein spore displayed tyrosinase MCF-7 cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank the University of Isfahan for financial support given to MS student for a training period in the Department of Biology, University of Isfahan. We should also thank professor Byung Gee Kim from School of Chemical and Biological Engineering, Seoul National University, Korea to prepare some materials used in this study and supporting us to do HPLC analysis in his lab.

References

  1. 1.
    Kotepui, M. (2016) Diet and risk of breast cancer, Contemp. Oncol. (Pozn). 20 13–19. doi:  https://doi.org/10.5114/wo.2014.40560.Google Scholar
  2. 2.
    Youlden, D. R., S. M. Cramb, C. H. Yip, and P. D. Baade (2014) Incidence and mortality of female breast cancer in the Asia-Pacific region. Cancer. Biol. Med. 11: 101–115. doi:  https://doi.org/10.7497/j.issn.2095-3941.2014.02.005.Google Scholar
  3. 3.
    Agarwal, G., P. V. Pradeep, V. Aggarwal, C. H. Yip, and P. S. Cheung (2007) Spectrum of breast cancer in Asian women. World. J. Surg. 31: 1031–1040. doi:  https://doi.org/10.1007/s00268-005-0585-9.CrossRefGoogle Scholar
  4. 4.
    Giacosa, A., R. Barale, L. Bavaresco, P. Gatenby, V. Gerbi, J. Janssens, B. Johnston, K. Kas, C. La Vecchia, P. Mainguet, P. Morazzoni, E. Negri, C. Pelucchi, M. Pezzotti, and M. Rondanelli (2013) Cancer prevention in Europe: the Mediterranean diet as a protective choice. Eur. J. Cancer. Prev. 22: 90–95. doi:  https://doi.org/10.1097/CEJ.0b013e328354d2d7 CrossRefGoogle Scholar
  5. 5.
    Sung, B., S. Prasad, V. R. Yadav, A. Lavasanifar, and B. B. Aggarwal (2011) Cancer and diet: How are they related?. Free. Radic. Res. 45: 864–79. doi:  https://doi.org/10.3109/10715762.2011.582869.CrossRefGoogle Scholar
  6. 6.
    Hilakivi-Clarke, L., J. E. Andrade, and W. Helferich (2010) Is soy consumption good or bad for the breast?. J. Nutr. 140: 2326S–2334S. doi:  https://doi.org/10.3945/jn.110.124230.CrossRefGoogle Scholar
  7. 7.
    Burda, S. and W. Oleszek (2001) Antioxidant and antiradical activities of flavonoids. J. Agric. Food. Chem. 49: 2774–2779. doi:  https://doi.org/10.1021/jf001413m.CrossRefGoogle Scholar
  8. 8.
    Ruiz-Larrea, M. B., A. R. Mohan, G. Paganga, N. J. Miller, G. P. Bolwell, and C. A. Rice-Evans (1997) Antioxidant activity of phytoestrogenic isoflavones. Free. Radic. Res. 26: 63–70. doi:  https://doi.org/10.3109/10715769709097785.CrossRefGoogle Scholar
  9. 9.
    Kim, N. Y., E. J. Song, D. Y. Kwon, H. P. Kim, and M. Y. Heo, (2008) Antioxidant and antigenotoxic activities of Korean fermented soybean. Food. Chem. Toxicol. 46: 1184–1189. doi:  https://doi.org/10.1016/j.fct.2007.12.003.CrossRefGoogle Scholar
  10. 10.
    Shim, H. Y., J. H. Park, H. D. Paik, S. Y. Nah, D. S. Kim, and Y. S. Han (2007) Genistein-induced apoptosis of human breast cancer MCF-7 cells involves calpain-caspase and apoptosis signaling kinase 1-p38 mitogen-activated protein kinase activation cascades. Anti-Cancer. Drug. 18: 649–657. doi:  https://doi.org/10.1097/CAD.0b013e3280825573.CrossRefGoogle Scholar
  11. 11.
    Sutrisno, S., M. Mariyani, I. Herawati, E. Rinata, J. Jehanara, Y. Yueniwati, N. Nurdiana, N. Noorhamdani, and S. Santos (2014) The effects of genistein as antiinflammatory and antiangiogenesis in primary endometriosis cell culture. Asian. Pac. J. Reprod. 3: 299–304.  https://doi.org/10.1016/S2305-0500(14)60043-9 CrossRefGoogle Scholar
  12. 12.
    Akiyama, T., J. Ishida, S. Nakagawa, H. Ogawara, S. Watanabe, N. Itoh, M. Shibuya, and Y. Fukami, (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 262: 5592–5595.Google Scholar
  13. 13.
    Sarkar, F. H. and Y. Li (2003) Soy isoflavones and cancer prevention. Cancer. Invest. 21: 744–757.  https://doi.org/10.1081/CNV-120023773 CrossRefGoogle Scholar
  14. 14.
    Choi, J. N., D. Kim, H. K. Choi, K. M. Yoo, J. Kim, and C. H. Lee (2009) 2′-Hydroxylation of genistein enhanced antioxidant and antiproliferative activities in MCF-7 human breast cancer cells. Microbiol. Biotechnol. 19: 1348–1354. doi:  https://doi.org/10.4014/jmb.0903.0114 Google Scholar
  15. 15.
    Lee, P. G., U. J. Lee, H. Song, K. Y. Choi, and B. G. Kim (2018) Recent advances in the microbial hydroxylation and reduction of soy isoflavones. FEMS Microbiol. Lett. 365: 1–13. doi:  https://doi.org/10.1093/femsle/fny195.Google Scholar
  16. 16.
    Lee, S. H., K. Baek, J. E. Lee, and B. G. Kim (2016) Using tyrosinase as a monophenol monooxygenase: a combined strategy for effective inhibition of melanin formation. Biotechnol. Bioeng. 113: 735–743. doi:  https://doi.org/10.1002/bit.25855.CrossRefGoogle Scholar
  17. 17.
    Choi, K. Y., E. Jung, H. Yun, Y. H. Yang, and B. G. Kim (2014) Engineering class I cytochrome P450 by gene fusion with NADPH-dependent reductase and S. avermitilis host development for daidzein biotransformation. Appl. Microbiol. Biot. 98: 8191–200. doi:  https://doi.org/10.1007/s00253-014-5706-7.CrossRefGoogle Scholar
  18. 18.
    Zaidi, K. U., A. S. Ali, A. Ali, and I. Naaz (2014) Microbial tyrosinases: promising enzymes for pharmaceutical, food bioprocessing, and environmental industry. Biochem. Res. Int. 16: 854687 doi:  https://doi.org/10.1155/2014/854687 Google Scholar
  19. 19.
    Hosseini-Abari, A., B. G. Kim, S. H. Lee, G. Emtiazi, W. Kim, and J. H. Kim (2016) Surface display of bacterial tyrosinase on spores of Bacillus subtilis using CotE as an anchor protein. J. Basic. Microbiol. 56: 1331–1337. doi:  https://doi.org/10.1002/jobm.201600203.CrossRefGoogle Scholar
  20. 20.
    Harwood, C. R. and S. M. Cutting (1990) Molecular biological methods for Bacillus, John Wiley & Sons, New York.Google Scholar
  21. 21.
    Lee, S. H. (2017) Fine control of tyrosinase dependent monophenol oxidation: Production of catechol derivatives and development of functional hydrogels. Ph.D. Thesis. Seoul National University, Seoul, Korea.Google Scholar
  22. 22.
    Yahara, S., N. Ding, and T. Nohara (1994) Oleanane glycosides from Eclipta alba. Chem. Pharm. Bull. 42: 1336–8.  https://doi.org/10.1248/cpb.42.1336.CrossRefGoogle Scholar
  23. 23.
    Freshney, R. I. (2010) Culture of animal cells, 16th ed., John Wiley & Sons, New Jersey.CrossRefGoogle Scholar
  24. 24.
    Marik, R., M. Allu, R. Anchoori, V. Stearns, C. B. Umbricht, and S. Khan (2011) Potent genistein derivatives as inhibitors of estrogen receptor alpha-positive breast cancer. Cancer. Biol. Ther. 11: 883–892.  https://doi.org/10.4161/cbt.11.10.15184.CrossRefGoogle Scholar
  25. 25.
    Brunner, N., D. Bronzert, L. L. Vindelov, K. Rygaard, M. Spang-Thomsen, and M. E. Lippman (1989) Effect of growth and cell cycle kinetics of estradiol and tamoxifen on MCF-7 human breast cancer cells growth in vitro and in nude mice. Cancer. Res. 49: 1515–1520.Google Scholar
  26. 26.
    Wei, Q. K., T. R. Chen, and J. T. Chen (2007) Using of Lactobacillus and Bifidobacterium to product the isoflavone aglycones in fermented soymilk. Int. J. Food. Microbiol. 117: 120–124.CrossRefGoogle Scholar
  27. 27.
    Klus, K. and W. Barz (1995) Formation of polyhydroxylated isoflavones from the soybean seed isoflavones daidzein and glycitein by bacteria isolated from tempe. Arch. Microbiol. 164: 428–34.CrossRefGoogle Scholar
  28. 28.
    Hosny, M. and J. P. N. Rosazza (1999) Microbial hydroxylation and methylation of genistein by Streptomycetes. J. Nat. Prod. 62: 1609–1612.CrossRefGoogle Scholar
  29. 29.
    Choi, K. Y., T. J. Kim, S. K. Koh, C. H. Roh, B. P. Pandey, N. Lee, and B. G. Kim (2009) A-ring ortho-specific monohydroxylation of daidzein by cytochrome P450s of Nocardia farcinica IFM10152. Biotechnol. J. 4: 1586–95.CrossRefGoogle Scholar
  30. 30.
    Roh, C., S. H. Seo, K. Y. Choi, M. Cha, B. P. Pandey, J. H. Kim, J. S. Park, D. H. Kim, I. S. Chang, and B. G. Kim (2009) Regio selective hydroxylation of isoflavones by Streptomyces avermitilis MA4680. J. Biosci. Bioeng. 108: 41–46.CrossRefGoogle Scholar
  31. 31.
    Allred, C. D., K. F. Allred, Y. H. Ju, S. M. Virant, and W. G. Helferich (2001) Cancer. Res. 61: 5045–5050.Google Scholar
  32. 32.
    Vivacqua, A., D. Bonofiglio, L. Albanito, A. Madeo, V. Rago, A. Carpino, A. M. Musti, D. Picard, S. Ando, and M. Maggiolini (2006) 17beta-estradiol, genistein, and 4-hydroxytamoxifen induce the proliferation of thyroid cancer cells through the g protein-coupled receptor GPR30. Mol. Pharmacol. 70: 1414–1423. DOI:  https://doi.org/10.1124/mol.106.026344.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  1. 1.Department of Biology, Faculty of SciencesUniversity of IsfahanIsfahanIran

Personalised recommendations