Advertisement

Biotechnology and Bioprocess Engineering

, Volume 24, Issue 3, pp 454–463 | Cite as

Effects of Bamboo Stem Extracts on Adipogenic Differentiation and Lipid Metabolism Regulating Genes

  • Seulmini Goh
  • Dongjoo Kim
  • Moon-Hee Choi
  • Hyun-Jae Shin
  • Soonjo KwonEmail author
Research Paper
  • 14 Downloads

Abstract

Diabetes mellitus is a chronic, progressive disease that has lasting effects on several organs and tissues. In addition, high glucose levels, high triglyceride and high cholesterol levels increase patient health problems. In this study, we investigated natural materials that can alleviate diabetes symptoms or prevent its onset and assessed extracts of bamboo stem, which has been known for centuries as a functional food. Mouse 3T3-L1 cells were induced to differentiate by adding a mixture of dexamethasone, 3-isobutyl-1-methylxanthine, and insulin (DMI) to the cell media after cells reached 100% confluence. The cells were then treated with hot water extract (HE), ethanol extract (EE), or methanol extract (ME) of bamboo stem for 4 and 13 days, after which the expression levels of differentiation markers C/EBPβ, PPARγ, and FABP4 were measured. At day 13, changes in metabolic function were assessed by analyzing the expression levels of ABCG1, CD36, and GLUT4 using RT-qPCR. Adipocyte size distribution was determined using a Coulter counter after trypsinization. The total triglyceride content was quantified using an adipogenesis assay kit. The HE-, EE-, and ME-treated 3T3-L1 cells showed increased adipogenesis marker expression, triglyceride content, and adipocyte volumes compared to the controls. The expression of genes related to adipocyte function were elevated in EE- and ME-treated samples. Taken together, these findings indicate that bamboo stem extracts, especially ethanol extract, have prophylactic effects for diabetes that occur through the promotion of adipogenesis and adipocyte functions.

Keywords

bamboo stem extract diabetes mellitus 3T3-L1 adipocyte differentiation lipid metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Funding was provided by an Inha University Research Grant (Korea).

Supplementary material

12257_2019_29_MOESM1_ESM.pdf (257 kb)
Supplementary material, approximately 263 KB.

References

  1. 1.
    Mathers, C. D. and D. Loncar (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLOS Medicine 3: e442–e442.CrossRefGoogle Scholar
  2. 2.
    World Health Organization (2016) Global report on diabetes.Google Scholar
  3. 3.
    Kang, C.-H., Y.-J. Kwon, and J.-S. So (2014) Anti-adipogenic effects of Corni fructus in 3T3-L1 preadipocytes. Biotechnology and Bioprocess Engineering 19: 52–57.CrossRefGoogle Scholar
  4. 4.
    Assimacopoulos-Jeannet, F. (2004) Fat storage in pancreas and in insulin-sensitive tissues in pathogenesis of type 2 diabetes. International Journal of Obesity 28: S53–S53.CrossRefGoogle Scholar
  5. 5.
    Zimmet, P., K. G. M. M. Alberti, and J. Shaw (2001) Global and societal implications of the diabetes epidemic. Nature 414: 782–782.CrossRefGoogle Scholar
  6. 6.
    Hauner, H. (2002) The mode of action of thiazolidinediones. Diabetes/Metabolism Research and Reviews 18: S10–S15.CrossRefGoogle Scholar
  7. 7.
    Rizos, C. V., M. Elisaf, D. P. Mikhailidis, and E. N. Liberopoulos (2009) How safe is the use of thiazolidinediones in clinical practice? Expert Opinion on Drug Safety 8: 15–32.CrossRefGoogle Scholar
  8. 8.
    Tan, N.-S., N. S. Shaw, N. Vinckenbosch, P. Liu, R. Yasmin, B. Desvergne, W. Wahli, and N. Noy (2002) Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Molecular and Cellular Biology 22: 5114–5127.CrossRefGoogle Scholar
  9. 9.
    Wu, Z., N. L. Bucher, and S. R. Farmer (1996) Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Molecular and Cellular Biology 16: 4128–4136.CrossRefGoogle Scholar
  10. 10.
    Abel, E. D., O. Peroni, J. K. Kim, Y.-B. Kim, O. Boss, E. Hadro, T. Minnemann, G. I. Shulman, and B. B. Kahn (2001) Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409: 729–729.CrossRefGoogle Scholar
  11. 11.
    Furuhashi, M., N. Ura, T. Nakata, and K. Shimamoto (2003) Insulin sensitivity and lipid metabolism in human CD36 deficiency. Diabetes Care 26: 471 LP-474.CrossRefGoogle Scholar
  12. 12.
    Bae, C. R., Y. K. Park, and Y. S. Cha (2014) Quercetin-rich onion peel extract suppresses adipogenesis by down-regulating adipogenic transcription factors and gene expression in 3T3-L1 adipocytes. Journal of the Science of Food and Agriculture 94: 2655–2660.CrossRefGoogle Scholar
  13. 13.
    de Camargo, A. C., M. A. B. Regitano-d’Arce, G. B. Rasera, S. G. Canniatti-Brazaca, L. do Prado-Silva, V. O. Alvarenga, A. S. Sant’Ana, and F. Shahidi (2017) Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antimicrobial effects. Food Chemistry 237: 538–544.CrossRefGoogle Scholar
  14. 14.
    Subramoniam, A. (2016) Plants with Anti-Diabetes Mellitus Properties. CRC Press ed. CRC Press.Google Scholar
  15. 15.
    Joshi, R. K., P. A. Patil, M. H. K. Mujawar, D. Kumar, and S. D. Kholkute (2009) Hypoglycemic activity of bambusa arundinacea leaf aqueous extract in euglycemic and hyperglycemic Wistar rats. Pharmacologyonline 3: 789–795.Google Scholar
  16. 16.
    Menaria, J. (2017) Anti diabetic activity of leaves extract of bambusa arundinacea. The Pharmaceutical and Chemical Journal 3: 197–200.Google Scholar
  17. 17.
    Kim, H., K. Okubo, T. Fujii, and K. Takemura (2013) Influence of fiber extraction and surface modification on mechanical properties of green composites with bamboo fiber. Journal of Adhesion Science and Technology 27: 1348–1358.CrossRefGoogle Scholar
  18. 18.
    Zakikhani, P., R. Zahari, M. T. H. Sultan, and D. L. Majid (2014) Extraction and preparation of bamboo fibre-reinforced composites. Materials and Design 63: 820–828.CrossRefGoogle Scholar
  19. 19.
    Xie, J., Y. S. Lin, X. J. Shi, X. Y. Zhu, W. K. Su, and P. Wang (2013) Mechanochemical-assisted extraction of flavonoids from bamboo (Phyllostachys edulis) leaves. Industrial Crops and Products 43: 276–282.CrossRefGoogle Scholar
  20. 20.
    Zhang, Y., X. Yao, B. Bao, and Y. Zhang (2006) Anti-fatigue activity of a triterpenoid-rich extract from chinese bamboo shavings (Caulis bamfusae in taeniam). Phytotherapy Research 20: 872–876.CrossRefGoogle Scholar
  21. 21.
    Martinerie, C., M. Garcia, T. T. H. Do, B. Antoine, M. Moldes, G. Dorothee, C. Kazazian, M. Auclair, M. Buyse, T. Ledent, P.-O. Marchal, M. Fesatidou, A. Beisseiche, H. Koseki, S. Hiraoka, C. E. Chadjichristos, B. Blondeau, R. G. Denis, S. Luquet, and B. Fève (2016) NOV/CCN3: A new adipocytokine involved in obesity-associated insulin resistance. Diabetes 65: 2502 LP-2515.CrossRefGoogle Scholar
  22. 22.
    Choe, S. S., J. Y. Huh, I. J. Hwang, J. I. Kim, and J. B. Kim (2016) Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Frontiers in Endocrinology 7: 30–30.CrossRefGoogle Scholar
  23. 23.
    McGarry, J. D. and R. L. Dobbins (1999) Fatty acids, lipotoxicity and insulin secretion. Diabetologia 42: 128–138.CrossRefGoogle Scholar
  24. 24.
    Kim, J. I., J. Y. Huh, J. H. Sohn, S. S. Choe, Y. S. Lee, C. Y. Lim, A. Jo, S. B. Park, W. Han, and J. B. Kim (2015) Lipid-overloaded enlarged adipocytes provoke insulin resistance independent of inflammation. Molecular and Cellular Biology 35: 1686–1699.CrossRefGoogle Scholar
  25. 25.
    Van Dijk, S. J., E. J. M. Feskens, M. B. Bos, D. W. M. Hoelen, R. Heijligenberg, M. G. Bromhaar, L. C. P. G. M. De Groot, J. H. M. De Vries, M. Müller, and L. A. Afman (2009) A saturated fatty acid-rich diet induces an obesity-linked proinflammatory gene expression profile in adipose tissue of subjects at risk of metabolic syndrome. American Journal of Clinical Nutrition 90: 1656–1664.CrossRefGoogle Scholar
  26. 26.
    Feinstein, R., H. Kanety, M. Z. Papa, B. Lunenfeld, and A. Karasik (1993) Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. Journal of Biological Chemistry 268: 26055–26058.Google Scholar
  27. 27.
    Hotamisligil, G. S., N. S. Shargill, and B. M. Spiegelman (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259: 87 LP-91.CrossRefGoogle Scholar
  28. 28.
    Leite, S. A. O., S. B. Locatelli, S. P. Niece, A. R. F. Oliveira, D. Tockus, and T. Tosin (2010) Impact of hyperglycemia on morbidity and mortality, length of hospitalization and rates of rehospitalization in a general hospital setting in Brazil. Diabetology & Metabolic Syndrome 2: 49–49.CrossRefGoogle Scholar
  29. 29.
    Jang, M. H., N. H. Kang, S. Mukherjee, and J. W. Yun (2018) Theobromine, a methylxanthine in cocoa bean, stimulates thermogenesis by inducing white fat browning and activating brown adipocytes. Biotechnology and Bioprocess Engineering 23: 617–626.CrossRefGoogle Scholar
  30. 30.
    Tang, Q.-Q., J.-W. Zhang, and M. Daniel Lane (2004) Sequential gene promoter interactions of C/EBPβ, C/EBPα, and PPARγ during adipogenesis. Biochemical and Biophysical Research Communications 319: 235–239.CrossRefGoogle Scholar
  31. 31.
    Cao, Z., R. M. Umek, and S. L. McKnight (1991) Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes and Development 5: 1538–1552.CrossRefGoogle Scholar
  32. 32.
    Farmer, S. R., A. Street, R. Title, and H. G. Dk (2001) A role for C/EBP in regulating PPAR activity during adipogenesis in 3T3-L1 preadipocytes. Journal of Biological Chemistry 276: 18464–18471.CrossRefGoogle Scholar
  33. 33.
    Hu, E., P. Tontonoz, and B. M. Spiegelman (1995) Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proceedings of the National Academy of Sciences of the United States of America 92: 9856–9860.CrossRefGoogle Scholar
  34. 34.
    Tontonoz, P., E. Hu, and B. M. Spiegelman (1994) Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79: 1147–1156.CrossRefGoogle Scholar
  35. 35.
    Xiao, L., X. Yang, Y. Lin, S. Li, J. Jiang, S. Qian, Q. Tang, R. He, and X. Li (2015) Large adipocytes function as antigen-presenting cells to activate CD4+ T cells via upregulating MHCII in obesity. International Journal of Obesity 40: 112–112.CrossRefGoogle Scholar
  36. 36.
    Wang, N., D. Lan, W. Chen, F. Matsuura, and A. R. Tall (2004) ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proceedings of the National Academy of Sciences of the United States of America 101: 9774 LP-9779.CrossRefGoogle Scholar
  37. 37.
    Frisdal, E., S. Le Lay, H. Hooton, L. Poupel, M. Olivier, R. Alili, W. Plengpanich, E. F. Villard, S. Gilibert, M. Lhomme, A. Superville, L. Miftah-Alkhair, M. J. Chapman, G. M. Dallinga-Thie, N. Venteclef, C. Poitou, J. Tordjman, P. Lesnik, A. Kontush, T. Huby, I. Dugail, K. Clement, M. Guerin, and W. Le Goff (2015) Adipocyte ATP-binding cassette G1 promotes triglyceride storage, fat mass growth, and human obesity. Diabetes 64: 840LP–855.CrossRefGoogle Scholar
  38. 38.
    Carvalho, E., K. Kotani, O. D. Peroni, and B. B. Kahn (2005) Adipose-specific overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking GLUT4 selectively in muscle. American Journal of Physiology-Endocrinology and Metabolism 289: E551–E561.CrossRefGoogle Scholar
  39. 39.
    Spalding, K. L., E. Arner, P. O. Westermark, S. Bernard, B. A. Buchholz, O. Bergmann, L. Blomqvist, J. Hoffstedt, E. Näslund, T. Britton, H. Concha, M. Hassan, M. Rydén, J. Frisén, and P. Arner (2008) Dynamics of fat cell turnover in humans. Nature 453: 783–783.CrossRefGoogle Scholar
  40. 40.
    Danforth Jr, E. (2000) Failure of adipocyte differentiation causes type II diabetes mellitus? Nature Genetics 26: 13–13.CrossRefGoogle Scholar
  41. 41.
    Marcovecchio, M. L. (2017) Complications of acute and chronic hyperglycemia. US Endocrinology. Google Scholar
  42. 42.
    Bollheimer, L. C., R. H. Skelly, M. W. Chester, J. D. McGarry, and C. J. Rhodes (1998) Chronic exposure to free fatty acid reduces pancreatic beta cell insulin content by increasing basal insulin secretion that is not compensated for by a corresponding increase in proinsulin biosynthesis translation. Journal of Clinical Investigation 101: 1094–1101.CrossRefGoogle Scholar
  43. 43.
    Cen, J., E. Sargsyan, and P. Bergsten (2016) Fatty acids stimulate insulin secretion from human pancreatic islets at fasting glucose concentrations via mitochondria-dependent and -independent mechanisms. Nutrition & Metabolism 13: 59–59.CrossRefGoogle Scholar
  44. 44.
    Tan, C., A. Salehi, S. Svensson, B. Olde, and D. Erlinge (2010) ADP receptor P2Y13 Induce apoptosis in pancreatic β-cells. Cellular and Molecular Life Sciences 67: 445–453.CrossRefGoogle Scholar
  45. 45.
    Zhou, Y. P., and V. E. Grill (1994) Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. Journal of Clinical Investigation 93: 870–876.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  • Seulmini Goh
    • 1
  • Dongjoo Kim
    • 1
  • Moon-Hee Choi
    • 2
  • Hyun-Jae Shin
    • 2
  • Soonjo Kwon
    • 1
    Email author
  1. 1.Department of Biological EngineeringInha UniversityIncheonKorea
  2. 2.Department of Chemical EngineeringGraduate School of Chosun UniversityGwangjuKorea

Personalised recommendations